mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
176 lines
6.3 KiB
Python
176 lines
6.3 KiB
Python
import os
|
|
import os.path as osp
|
|
from typing import Dict, List, Optional
|
|
|
|
import mmengine
|
|
from mmengine.config import ConfigDict
|
|
|
|
from opencompass.openicl.icl_evaluator import BaseEvaluator
|
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
|
from opencompass.registry import (DICT_POSTPROCESSORS, ICL_PROMPT_TEMPLATES,
|
|
TEXT_POSTPROCESSORS)
|
|
from opencompass.utils import build_dataset_from_cfg, build_model_from_cfg
|
|
from opencompass.utils.logging import get_logger
|
|
|
|
|
|
class GenericLLMEvaluator(BaseEvaluator):
|
|
"""Generic LLM evaluator.
|
|
|
|
Arguments:
|
|
prompt_template (ConfigDict): The prompt template for evaluation.
|
|
judge_cfg (ConfigDict): The config for Judge LLM.
|
|
dataset_cfg (ConfigDict): The config for dataset.
|
|
pred_postprocessor (ConfigDict): The config for postprocessor.
|
|
dict_postprocessor (ConfigDict): The config for postprocessor,
|
|
used for evaluation results dict.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
prompt_template: ConfigDict,
|
|
judge_cfg: ConfigDict,
|
|
dataset_cfg: Optional[ConfigDict] = None,
|
|
pred_postprocessor: Optional[ConfigDict] = None,
|
|
dict_postprocessor: Optional[ConfigDict] = None,
|
|
keep_predictions: bool = False,
|
|
) -> None:
|
|
|
|
self.logger = get_logger()
|
|
# If judge_cfg is not provided, fall back to the default configuration
|
|
if not judge_cfg:
|
|
self.judge_cfg = self.default_judge_cfg
|
|
else:
|
|
self.judge_cfg = judge_cfg
|
|
self.output_path = ''
|
|
|
|
self.prompt_template = ICL_PROMPT_TEMPLATES.build(prompt_template)
|
|
|
|
# Build Dataset
|
|
self.dataset_cfg = dataset_cfg
|
|
assert dataset_cfg is not None, 'dataset_cfg is None'
|
|
|
|
self.dict_postprocessor = dict_postprocessor
|
|
self.pred_postprocessor = pred_postprocessor
|
|
|
|
def build_inferencer(self, ):
|
|
"""Build LLM Inference."""
|
|
output_path = self._out_dir
|
|
self.output_path = f'{output_path}.json'
|
|
out_dir, out_name = osp.split(output_path)
|
|
out_name = f'{out_name}.json'
|
|
|
|
self.logger.info(
|
|
f'Set self.output_path to {self.output_path} for current task')
|
|
assert self.output_path is not None, 'output_path is None'
|
|
|
|
# Build LLM Inference
|
|
max_out_len = self.judge_cfg.get('max_out_len', None)
|
|
batch_size = self.judge_cfg.get('batch_size', None)
|
|
|
|
model = build_model_from_cfg(model_cfg=self.judge_cfg)
|
|
|
|
self.inferencer = GenInferencer(
|
|
model,
|
|
max_out_len=max_out_len,
|
|
batch_size=batch_size,
|
|
output_json_filepath=out_dir,
|
|
output_json_filename=out_name,
|
|
)
|
|
|
|
def score(
|
|
self,
|
|
predictions,
|
|
references: Optional[List] = None,
|
|
) -> Dict:
|
|
"""Apply to single-model scoring."""
|
|
# -------------- Build Inferencer ----------------
|
|
self.build_inferencer()
|
|
|
|
# ---------------- Process Predictions ------------------
|
|
predictions = self.pred_postprocess(predictions)
|
|
|
|
# For Single Round Dialogue
|
|
prediction_dict = {}
|
|
prediction_dict['prediction'] = predictions
|
|
prediction_dict['obj_gold'] = references
|
|
|
|
# ---------------- Build Dataset for LLM Judge -----------------
|
|
if self.dataset_cfg:
|
|
dataset = build_dataset_from_cfg(self.dataset_cfg)
|
|
for k, v in prediction_dict.items():
|
|
dataset.reader.dataset['test'] = dataset.test.add_column(k, v)
|
|
dataset.reader.input_columns.append(k)
|
|
|
|
if references:
|
|
dataset.reader.input_columns.append('reference')
|
|
dataset.reader.dataset['test'] = dataset.test.add_column(
|
|
'reference', references)
|
|
else:
|
|
# build a default dataset just for comparison
|
|
from opencompass.datasets.lmeval import LMEvalDataset
|
|
|
|
input_columns = list(prediction_dict.keys())
|
|
if references:
|
|
input_columns.append('reference')
|
|
dataset = LMEvalDataset(
|
|
reader_cfg=dict(input_columns=input_columns,
|
|
output_column=None,
|
|
train_split='test'),
|
|
reference=references,
|
|
**prediction_dict,
|
|
)
|
|
dataset.reader.output_column = 'reference'
|
|
retriever = ZeroRetriever(dataset)
|
|
# ----------------- LLM Judge ----------------
|
|
self.inferencer.inference(retriever=retriever,
|
|
prompt_template=self.prompt_template)
|
|
|
|
output = mmengine.load(self.output_path)
|
|
return self.output_postprocess(output)
|
|
|
|
def pred_postprocess(self, predictions: List) -> Dict:
|
|
if self.pred_postprocessor is None:
|
|
return predictions
|
|
else:
|
|
kwargs = self.pred_postprocessor
|
|
proc = TEXT_POSTPROCESSORS.get(kwargs.pop('type'))
|
|
return [proc(pred, **kwargs) for pred in predictions]
|
|
|
|
def output_postprocess(self, output: Dict) -> Dict:
|
|
"""Postprocess output by adding necessary statistics or data into
|
|
it."""
|
|
if self.dict_postprocessor is None:
|
|
return output
|
|
else:
|
|
kwargs = self.dict_postprocessor
|
|
proc = DICT_POSTPROCESSORS.get(kwargs.pop('type'))
|
|
return proc(output, self.output_path, **kwargs)
|
|
|
|
@property
|
|
def default_judge_cfg(self):
|
|
from opencompass.models import OpenAISDK
|
|
|
|
DEFAULT_JUDGE_CFG = dict(
|
|
type=OpenAISDK,
|
|
path=os.environ['OC_JUDGE_MODEL'],
|
|
key=os.environ['OC_JUDGE_API_KEY'],
|
|
openai_api_base=[
|
|
os.environ.get('OC_JUDGE_API_BASE',
|
|
'https://api.openai.com/v1/')
|
|
],
|
|
meta_template=dict(round=[
|
|
dict(role='HUMAN', api_role='HUMAN'),
|
|
dict(role='BOT', api_role='BOT', generate=True),
|
|
], ),
|
|
query_per_second=16,
|
|
batch_size=1024,
|
|
temperature=0.001,
|
|
tokenizer_path='gpt-4o-2024-05-13',
|
|
verbose=True,
|
|
max_out_len=16384,
|
|
max_seq_len=49152,
|
|
)
|
|
|
|
return DEFAULT_JUDGE_CFG
|