OpenCompass/opencompass/datasets/humaneval.py
2023-11-27 16:06:49 +08:00

131 lines
5.0 KiB
Python

import json
import os.path as osp
import re
import tempfile
from typing import List
from datasets import Dataset
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.registry import LOAD_DATASET
from .base import BaseDataset
@LOAD_DATASET.register_module()
class HumanevalDataset(BaseDataset):
@staticmethod
def load(path: str, num_repeats: int = 1):
"""Load humaneval dataset for pass k mode.
Note that you can use num_repeats > 1 when your model does not support
`num_return_sequence` in generation, otherwise use the raw
humaneval dataset and set `num_return_sequence` in model config to
generate multiple responses for testing pass@k>1.
It better to change your dataset abbr correspondingly if you want to
change num_repeats>1, otherwise the number in
`.cache/dataset_size.json` might be inconsistent.
Args:
num_repeats(int): Number of repetition for this dataset to get
multiple responses in special cases.
"""
dataset = []
with open(path, 'r', encoding='utf-8') as f:
for line in f:
dataset.extend(
[json.loads(line.strip()) for _ in range(num_repeats)])
return Dataset.from_list(dataset)
class HumanEvaluator(BaseEvaluator):
"""Evaluator for human eval."""
def __init__(self, k: List[int] = [1, 10, 100]) -> None:
try:
from human_eval.data import HUMAN_EVAL, write_jsonl
from human_eval.evaluation import evaluate_functional_correctness
self.write_jsonl = write_jsonl
self.HUMAN_EVAL = HUMAN_EVAL
self.eval = evaluate_functional_correctness
except ImportError:
raise ImportError('Please install human_eval following'
'https://github.com/openai/human-eval/tree/'
'master#installation first.')
self.k = k
super().__init__()
def score(self, predictions, references):
humaneval_preds = []
# create json file in human_eval format
for preds, refer in zip(predictions, references):
# suits for two case
# 1. use repeated dataset
# 2. use `num_return_sequences` to generate multiple responses
if not isinstance(preds, list):
preds = [preds]
for pred in preds:
humaneval_preds.append({'task_id': refer, 'completion': pred})
with tempfile.TemporaryDirectory() as tmp_dir:
out_dir = osp.join(tmp_dir, 'human_eval.json')
self.write_jsonl(out_dir, humaneval_preds)
score = self.eval(out_dir,
self.k,
n_workers=4,
timeout=3.0,
problem_file=self.HUMAN_EVAL)
return {f'humaneval_{k}': score[k] * 100 for k in score}
def humaneval_postprocess(text: str) -> str:
if '```' in text:
blocks = re.findall(r'```(.*?)```', text, re.DOTALL)
if len(blocks) == 0:
text = text.split('```')[1] # fall back to default strategy
else:
text = blocks[0] # fetch the first code block
if not text.startswith('\n'): # in case starting with ```python
text = text[max(text.find('\n') + 1, 0):]
if text.strip().startswith('from') or text.strip().startswith('import'):
def_idx = text.find('def')
if def_idx != -1:
text = text[max(text.find('\n', def_idx) + 1, 0):]
text = text.split('\n\n')[0]
text = text.lstrip('\n')
if text.strip().startswith('def'):
text = '\n'.join(text.split('\n')[1:])
if not text.startswith(' '):
if text.startswith(' '):
text = ' ' + text.lstrip()
else:
text = '\n'.join([' ' + line for line in text.split('\n')])
return text
def humaneval_gpt_postprocess(text: str) -> str:
"""Better answer postprocessor for better instruction-aligned models like
GPT."""
if '```' in text:
blocks = re.findall(r'```(.*?)```', text, re.DOTALL)
if len(blocks) == 0:
text = text.split('```')[1] # fall back to default strategy
else:
text = blocks[0] # fetch the first code block
if not text.startswith('\n'): # in case starting with ```python
text = text[max(text.find('\n') + 1, 0):]
if text.strip().startswith('from') or text.strip().startswith('import'):
def_idx = text.find('def')
if def_idx != -1:
text = text[max(text.find('\n', def_idx) + 1, 0):]
text = text.split('\n\n\n')[0]
if text.strip().startswith('def'):
text = '\n'.join(text.split('\n')[1:])
if not text.startswith(' '):
if text.startswith(' '):
text = ' ' + text.lstrip()
else:
text = '\n'.join([' ' + line for line in text.split('\n')])
return text