OpenCompass/opencompass/datasets/narrativeqa.py
Xingjun.Wang edab1c07ba
[Feature] Support ModelScope datasets (#1289)
* add ceval, gsm8k modelscope surpport

* update race, mmlu, arc, cmmlu, commonsenseqa, humaneval and unittest

* update bbh, flores, obqa, siqa, storycloze, summedits, winogrande, xsum datasets

* format file

* format file

* update dataset format

* support ms_dataset

* udpate dataset for modelscope support

* merge myl_dev and update test_ms_dataset

* udpate dataset for modelscope support

* update readme

* update eval_api_zhipu_v2

* remove unused code

* add get_data_path function

* update readme

* remove tydiqa japanese subset

* add ceval, gsm8k modelscope surpport

* update race, mmlu, arc, cmmlu, commonsenseqa, humaneval and unittest

* update bbh, flores, obqa, siqa, storycloze, summedits, winogrande, xsum datasets

* format file

* format file

* update dataset format

* support ms_dataset

* udpate dataset for modelscope support

* merge myl_dev and update test_ms_dataset

* update readme

* udpate dataset for modelscope support

* update eval_api_zhipu_v2

* remove unused code

* add get_data_path function

* remove tydiqa japanese subset

* update util

* remove .DS_Store

* fix md format

* move util into package

* update docs/get_started.md

* restore eval_api_zhipu_v2.py, add environment setting

* Update dataset

* Update

* Update

* Update

* Update

---------

Co-authored-by: Yun lin <yunlin@U-Q9X2K4QV-1904.local>
Co-authored-by: Yunnglin <mao.looper@qq.com>
Co-authored-by: Yun lin <yunlin@laptop.local>
Co-authored-by: Yunnglin <maoyl@smail.nju.edu.cn>
Co-authored-by: zhangsongyang <zhangsongyang@pjlab.org.cn>
2024-07-29 13:48:32 +08:00

46 lines
1.5 KiB
Python

from datasets import Dataset, DatasetDict
from opencompass.registry import LOAD_DATASET
from opencompass.utils import get_data_path
from .base import BaseDataset
@LOAD_DATASET.register_module()
class NarrativeQADataset(BaseDataset):
@staticmethod
def load(path: str):
path = get_data_path(path, local_mode=True)
import csv
import os
dataset_dict = DatasetDict()
splits = ['train', 'valid', 'test']
dataset_lists = {x: [] for x in splits}
with open(os.path.join(path, 'qaps.csv'), 'r') as f:
reader = csv.reader(f, delimiter=',')
for row in reader:
if row[1] == 'set':
continue
split = row[1] # set
answers = [row[3], row[4]] # row['answer1'], row['answer2']
question = row[2] # question
x_path = os.path.join(path, 'tmp',
row[0] + '.content') # document_id
try:
with open(x_path, 'r', encoding='utf-8') as f:
evidence = f.read(100000)
except: # noqa: E722
continue
dataset_lists[split].append({
'answer': answers,
'question': question,
'evidence': evidence,
})
for split in splits:
dataset_dict[split] = Dataset.from_list(dataset_lists[split])
return dataset_dict