mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
147 lines
5.5 KiB
Python
147 lines
5.5 KiB
Python
# flake8: noqa
|
|
# yapf: disable
|
|
import csv
|
|
import os
|
|
import os.path as osp
|
|
import re
|
|
from collections import defaultdict
|
|
from datetime import datetime
|
|
|
|
import numpy as np
|
|
from mmengine import ConfigDict
|
|
from tabulate import tabulate
|
|
|
|
from opencompass.utils import dataset_abbr_from_cfg, model_abbr_from_cfg
|
|
|
|
from .compass_arena import CompassArenaSummarizer
|
|
from .utils import get_judgeanswer_and_reference, get_outdir
|
|
|
|
|
|
def model_abbr_from_cfg_used_in_summarizer(model):
|
|
if model.get('summarizer_abbr', None):
|
|
return model['summarizer_abbr']
|
|
else:
|
|
return model_abbr_from_cfg(model)
|
|
|
|
def post_process_single_rate(judgement: str):
|
|
"""Input a string like below:
|
|
|
|
xxx[[5]]xxx, and extract the score
|
|
"""
|
|
pattern = r'\[\[([\d.]+)\]\]'
|
|
matched_result = re.findall(pattern, judgement)
|
|
if matched_result:
|
|
score = float(matched_result[0])
|
|
else:
|
|
return None
|
|
return {'score': score}
|
|
|
|
|
|
def get_capability_results(
|
|
judged_answers,
|
|
references,
|
|
fout,
|
|
fout_flag,
|
|
model_abbr,
|
|
judge_model_abbr,
|
|
dataset_abbr,
|
|
):
|
|
capability_ratings = defaultdict(int)
|
|
capability_counts = defaultdict(int)
|
|
for ans, ref in zip(judged_answers, references):
|
|
capability_ratings['total'] += ans['score']
|
|
capability_counts['total'] += 1
|
|
capability_ratings[ref['capability']] += ans['score']
|
|
capability_counts[ref['capability']] += 1
|
|
|
|
capability_avg_ratings = defaultdict(float)
|
|
|
|
for capability, total_score in capability_ratings.items():
|
|
s = total_score / capability_counts[capability]
|
|
s = round(s, 2)
|
|
capability_avg_ratings[capability] = s
|
|
columns = list(capability_avg_ratings.keys())
|
|
columns.insert(0, columns.pop(columns.index('total')))
|
|
|
|
if fout_flag == 0:
|
|
with open(fout, 'w', newline='') as csvfile:
|
|
writer = csv.writer(csvfile)
|
|
if fout_flag == 0:
|
|
writer.writerow(['model', 'judge_model', 'dataset'] + columns)
|
|
writer.writerow([model_abbr] + [judge_model_abbr] + [dataset_abbr] + [capability_avg_ratings[column] for column in columns])
|
|
else:
|
|
with open(fout, 'a+', newline='') as csvfile:
|
|
writer = csv.writer(csvfile)
|
|
writer.writerow([model_abbr] + [judge_model_abbr] + [dataset_abbr] + [capability_avg_ratings[column] for column in columns])
|
|
|
|
|
|
class CommonSummarizer(CompassArenaSummarizer):
|
|
"""Do the subjectivity analyze based on evaluation results.
|
|
|
|
Args:
|
|
config (ConfigDict): The configuration object of the evaluation task.
|
|
It's expected to be filled out at runtime.
|
|
"""
|
|
|
|
def __init__(self, config: ConfigDict, judge_type='single_rate') -> None:
|
|
self.judge_type = judge_type
|
|
self.tasks = []
|
|
self.cfg = config
|
|
self.judge_type = 'single_rate'
|
|
self.eval_model_cfgs = self.cfg['eval']['partitioner']['models']
|
|
self.judge_model_cfgs = self.cfg['judge_models']
|
|
self.judge_map = {
|
|
'single_rate': post_process_single_rate
|
|
}
|
|
self.judge_function = self.judge_map[self.judge_type]
|
|
|
|
def summarize(self, time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S')):
|
|
"""Summarize the subjectivity analysis based on evaluation results.
|
|
|
|
Args:
|
|
time_str (str): Timestamp for file naming.
|
|
|
|
Returns:
|
|
pd.DataFrame: The summary results.
|
|
"""
|
|
if self.judge_type == 'pair':
|
|
return super().summarize()
|
|
|
|
# self.judge_type == 'single'
|
|
dataset_cfgs = self.cfg['datasets']
|
|
output_dir, results_folder = get_outdir(self.cfg, time_str)
|
|
fout_flag = 0
|
|
output_tmp_file = osp.join(output_dir, 'result.csv')
|
|
output_file = osp.join(output_dir, 'total_result.csv')
|
|
for eval_model_cfg in self.eval_model_cfgs:
|
|
for judge_model_cfg in self.judge_model_cfgs:
|
|
eval_model_abbr = model_abbr_from_cfg(eval_model_cfg)
|
|
show_model_abbr = model_abbr_from_cfg_used_in_summarizer(eval_model_cfg)
|
|
show_judge_model_abbr = model_abbr_from_cfg_used_in_summarizer(judge_model_cfg)
|
|
judge_abbr = model_abbr_from_cfg(judge_model_cfg)
|
|
subdir_path = os.path.join(results_folder, eval_model_abbr + '_judged-by--' + judge_abbr)
|
|
if os.path.isdir(subdir_path):
|
|
for dataset in dataset_cfgs:
|
|
judged_answers, references = get_judgeanswer_and_reference(dataset, subdir_path, self.judge_function)
|
|
show_dataset_abbr = dataset_abbr_from_cfg(dataset)
|
|
|
|
get_capability_results(judged_answers, references, output_tmp_file, fout_flag, show_model_abbr, show_judge_model_abbr, show_dataset_abbr)
|
|
fout_flag += 1
|
|
else:
|
|
print(subdir_path + ' is not exist! please check!')
|
|
with open(output_tmp_file, 'r') as f:
|
|
csv_reader = csv.reader(f)
|
|
header = next(csv_reader)
|
|
table = [line for line in csv_reader]
|
|
|
|
new_header = [''] + [line[0] for line in table]
|
|
new_table = [[h] + line[1:] for h, line in zip(header[1:], table)]
|
|
new_table = [[h] + [line[i] for line in table] for i, h in enumerate(header[1:], start=1)]
|
|
t = tabulate(new_table, headers=new_header)
|
|
with open(output_file, 'a') as f:
|
|
f.write(','.join(new_header) + '\n')
|
|
for line in new_table:
|
|
f.write(','.join(map(str, line)) + '\n')
|
|
print(t)
|
|
print(output_file)
|