OpenCompass/opencompass/tasks/outer_eval/alpacaeval.py
bittersweet1999 833a35140b
[Fix] fix alpacaeval while add caching path (#1139)
* fix alpacaeval

* fix alpacaeval
2024-05-11 14:02:26 +08:00

147 lines
5.2 KiB
Python

# flake8: noqa: E501
import copy
import json
import os
import os.path as osp
import mmengine
from mmengine.config import Config, ConfigDict
from opencompass.tasks.base import BaseTask
from opencompass.utils import (build_dataset_from_cfg, get_infer_output_path,
get_logger)
class PredictionMerger:
""""""
def __init__(self, cfg: ConfigDict) -> None:
self.cfg = cfg
self.model_cfg = copy.deepcopy(self.cfg['model'])
self.dataset_cfg = copy.deepcopy(self.cfg['dataset'])
self.work_dir = self.cfg.get('work_dir')
def run(self):
filename = get_infer_output_path(
self.model_cfg, self.dataset_cfg,
osp.join(self.work_dir, 'predictions'))
root, ext = osp.splitext(filename)
alpaca_format_filename = root + '_alpaca' + ext
partial_filename = root + '_0' + ext
if osp.exists(osp.realpath(alpaca_format_filename)):
return
if not osp.exists(osp.realpath(partial_filename)) and not osp.exists(
osp.realpath(filename)):
print(f'{filename} not found')
return
# Load predictions
partial_filenames = []
if osp.exists(osp.realpath(filename)):
preds = mmengine.load(filename)
else:
preds, offset = {}, 0
i = 1
while osp.exists(osp.realpath(partial_filename)):
partial_filenames.append(osp.realpath(partial_filename))
_preds = mmengine.load(partial_filename)
partial_filename = root + f'_{i}' + ext
i += 1
for _o in range(len(_preds)):
preds[str(offset)] = _preds[str(_o)]
offset += 1
dataset = build_dataset_from_cfg(self.dataset_cfg)
if len(preds) != len(dataset.test):
print('length mismatch')
return
with open(
osp.realpath(osp.join(self.dataset_cfg['path'],
'example.json')), 'r') as f:
data_format = json.load(f)
for idx in range(len(preds)):
data_format[idx]['output'] = preds[str(idx)]['prediction']
data_format[idx]['generator'] = self.model_cfg['abbr']
print(f'Convert to {alpaca_format_filename}')
with open(alpaca_format_filename, 'w', encoding='utf-8') as f:
json.dump(data_format, f, indent=4, ensure_ascii=False)
class AlpacaEvalTask(BaseTask):
"""Subjective Evaluation Task.
This task is used to evaluate the metric between predictions and
references.
Args:
cfg (ConfigDict): The configuration of the entire evaluation task.
"""
name_prefix = 'SubjectiveEval'
log_subdir = 'logs/eval'
output_subdir = 'results'
def __init__(self, cfg: ConfigDict):
super().__init__(cfg)
self.logger = get_logger()
judge_cfg = cfg.eval.runner.task.get('judge_cfg', {})
assert type(judge_cfg) == ConfigDict
run_cfg = judge_cfg.get('run_cfg', {})
self.num_gpus = run_cfg.get('num_gpus', 0)
self.num_procs = run_cfg.get('num_procs', 1)
self.judge_cfg = copy.deepcopy(judge_cfg)
def get_command(self, cfg_path, template):
"""Get the command template for the task.
Args:
cfg_path (str): The path to the config file of the task.
template (str): The template which have '{task_cmd}' to format
the command.
"""
# script_path = __file__
alpaca_cfg = self.judge_cfg.get('config', None)
api_key = self.judge_cfg.get('key', None)
base_url = self.judge_cfg.get('base_url', None)
assert alpaca_cfg is not None
all_cfg = Config.fromfile(cfg_path)
model_cfg = all_cfg['models']
dataset_cfg = all_cfg['datasets'][0][0]
work_dir = osp.realpath(all_cfg['work_dir'])
for m_cfg in model_cfg:
PredictionMerger({
'model': m_cfg,
'dataset': dataset_cfg,
'work_dir': work_dir
}).run()
filename = get_infer_output_path(m_cfg, dataset_cfg,
osp.join(work_dir, 'predictions'))
root, ext = osp.splitext(filename)
alpaca_format_filename = root + '_alpaca' + ext
output_path = osp.join(work_dir, 'results', m_cfg['abbr'])
if not osp.exists(output_path):
os.makedirs(output_path)
caching_path = osp.join(output_path, 'tmp_annotations.json')
command = ''
if api_key is not None:
command += f'export OPENAI_API_KEY={api_key}; '
else:
api_key = os.environ.get('OPENAI_API_KEY', '').split(',')[0]
if api_key:
command += f'export OPENAI_API_KEY={api_key}; '
if base_url is not None:
command += f'export OPENAI_BASE_URL={base_url}; '
command += f'alpaca_eval --model_outputs {alpaca_format_filename} --annotators_config {alpaca_cfg} --output_path {output_path} --caching_path {caching_path};'
return template.format(task_cmd=command)
def run(self):
# model_cfg can be a list of model configs
pass