mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* [Feat] Support Qwen-VL base. * [Feat] Support Qwen-VL-Chat on MMBench. * [Fix] Add postprocessor and fix format. * [Fix] Add type hint and remove redundant codes. * [Fix] fix bugs in postprocessor. * [Fix] Use given commit id.
294 lines
10 KiB
Python
294 lines
10 KiB
Python
# Copyright (c) Alibaba Cloud.
|
|
#
|
|
# This source code is licensed under the license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
"""Generation support."""
|
|
|
|
from typing import List, Tuple, Union
|
|
|
|
import torch
|
|
from transformers import PreTrainedTokenizer
|
|
|
|
# Types.
|
|
HistoryType = List[Tuple[str, str]]
|
|
TokensType = List[int]
|
|
BatchTokensType = List[List[int]]
|
|
|
|
|
|
def pad_batch(batch: BatchTokensType, pad_id: int,
|
|
seq_length: int) -> BatchTokensType:
|
|
for tokens in batch:
|
|
context_length = len(tokens)
|
|
if context_length < seq_length:
|
|
tokens.extend([pad_id] * (seq_length - context_length))
|
|
return batch
|
|
|
|
|
|
def get_ltor_masks_and_position_ids(
|
|
data: torch.Tensor,
|
|
eod_token: int,
|
|
reset_position_ids: bool,
|
|
reset_attention_mask: bool,
|
|
eod_mask_loss: bool,
|
|
):
|
|
"""Build masks and position id for left to right model."""
|
|
|
|
# Extract batch size and sequence length.
|
|
micro_batch_size, seq_length = data.size()
|
|
|
|
# Attention mask (lower triangular).
|
|
if reset_attention_mask:
|
|
att_mask_batch = micro_batch_size
|
|
else:
|
|
att_mask_batch = 1
|
|
attention_mask = torch.tril(
|
|
torch.ones((att_mask_batch, seq_length, seq_length),
|
|
device=data.device)).view(att_mask_batch, 1, seq_length,
|
|
seq_length)
|
|
|
|
# Loss mask.
|
|
loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
|
|
if eod_mask_loss:
|
|
loss_mask[data == eod_token] = 0.0
|
|
|
|
# Position ids.
|
|
position_ids = torch.arange(seq_length,
|
|
dtype=torch.long,
|
|
device=data.device)
|
|
position_ids = position_ids.unsqueeze(0).expand_as(data)
|
|
# We need to clone as the ids will be modified based on batch index.
|
|
if reset_position_ids:
|
|
position_ids = position_ids.clone()
|
|
|
|
if reset_position_ids or reset_attention_mask:
|
|
# Loop through the batches:
|
|
for b in range(micro_batch_size):
|
|
|
|
# Find indices where EOD token is.
|
|
eod_index = position_ids[b, data[b] == eod_token]
|
|
# Detach indices from positions if going to modify positions.
|
|
if reset_position_ids:
|
|
eod_index = eod_index.clone()
|
|
|
|
# Loop through EOD indices:
|
|
prev_index = 0
|
|
for j in range(eod_index.size()[0]):
|
|
i = eod_index[j]
|
|
# Mask attention loss.
|
|
if reset_attention_mask:
|
|
attention_mask[b, 0, (i + 1):, :(i + 1)] = 0
|
|
# Reset positions.
|
|
if reset_position_ids:
|
|
position_ids[b, (i + 1):] -= i + 1 - prev_index
|
|
prev_index = i + 1
|
|
|
|
# Convert attention mask to binary:
|
|
attention_mask = attention_mask < 0.5
|
|
|
|
return attention_mask, loss_mask, position_ids
|
|
|
|
|
|
def get_batch(context_tokens: torch.LongTensor, eod_id: int):
|
|
"""Generate batch from context tokens."""
|
|
# Move to GPU.
|
|
tokens = context_tokens.contiguous().to(context_tokens.device)
|
|
# Get the attention mask and position ids.
|
|
attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
|
|
tokens,
|
|
eod_id,
|
|
reset_position_ids=False,
|
|
reset_attention_mask=False,
|
|
eod_mask_loss=False,
|
|
)
|
|
return tokens, attention_mask, position_ids
|
|
|
|
|
|
def get_stop_words_ids(chat_format: str, tokenizer: PreTrainedTokenizer):
|
|
if chat_format == 'raw':
|
|
stop_words_ids = [tokenizer.encode('Human:'), [tokenizer.eod_id]]
|
|
elif chat_format == 'chatml':
|
|
stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
|
|
else:
|
|
raise NotImplementedError(f'Unknown chat format {chat_format!r}')
|
|
return stop_words_ids
|
|
|
|
|
|
def make_context(
|
|
tokenizer: PreTrainedTokenizer,
|
|
query: str,
|
|
history: List[Tuple[str, str]] = None,
|
|
system: str = '',
|
|
max_window_size: int = 6144,
|
|
chat_format: str = 'chatml',
|
|
):
|
|
if history is None:
|
|
history = []
|
|
|
|
if chat_format == 'chatml':
|
|
im_start, im_end = '<|im_start|>', '<|im_end|>'
|
|
im_start_tokens = [tokenizer.im_start_id]
|
|
im_end_tokens = [tokenizer.im_end_id]
|
|
nl_tokens = tokenizer.encode('\n')
|
|
|
|
def _tokenize_str(role, content):
|
|
return f'{role}\n{content}', tokenizer.encode(
|
|
role, allowed_special=set(
|
|
tokenizer.IMAGE_ST)) + nl_tokens + tokenizer.encode(
|
|
content, allowed_special=set(tokenizer.IMAGE_ST))
|
|
|
|
system_text, system_tokens_part = _tokenize_str('system', system)
|
|
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
|
|
|
|
raw_text = ''
|
|
context_tokens = []
|
|
|
|
for turn_query, turn_response in reversed(history):
|
|
query_text, query_tokens_part = _tokenize_str('user', turn_query)
|
|
query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
|
|
if turn_response is not None:
|
|
response_text, response_tokens_part = _tokenize_str(
|
|
'assistant', turn_response)
|
|
response_tokens = im_start_tokens + response_tokens_part + im_end_tokens # noqa
|
|
|
|
next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens # noqa
|
|
prev_chat = (
|
|
f'\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}' # noqa
|
|
)
|
|
else:
|
|
next_context_tokens = nl_tokens + query_tokens + nl_tokens
|
|
prev_chat = f'\n{im_start}{query_text}{im_end}\n'
|
|
|
|
current_context_size = (len(system_tokens) +
|
|
len(next_context_tokens) +
|
|
len(context_tokens))
|
|
if current_context_size < max_window_size:
|
|
context_tokens = next_context_tokens + context_tokens
|
|
raw_text = prev_chat + raw_text
|
|
else:
|
|
break
|
|
|
|
context_tokens = system_tokens + context_tokens
|
|
raw_text = f'{im_start}{system_text}{im_end}' + raw_text
|
|
context_tokens += (nl_tokens + im_start_tokens +
|
|
_tokenize_str('user', query)[1] + im_end_tokens +
|
|
nl_tokens + im_start_tokens +
|
|
tokenizer.encode('assistant') + nl_tokens)
|
|
raw_text += f'\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n'
|
|
|
|
elif chat_format == 'raw':
|
|
raw_text = query
|
|
context_tokens = tokenizer.encode(raw_text)
|
|
else:
|
|
raise NotImplementedError(f'Unknown chat format {chat_format!r}')
|
|
|
|
return raw_text, context_tokens
|
|
|
|
|
|
def _decode_default(
|
|
tokens: List[int],
|
|
*,
|
|
stop_words: List[str],
|
|
eod_words: List[str],
|
|
tokenizer: PreTrainedTokenizer,
|
|
raw_text_len: int,
|
|
verbose: bool = False,
|
|
return_end_reason: bool = False,
|
|
errors: str = 'replace',
|
|
):
|
|
trim_decode_tokens = tokenizer.decode(tokens, errors=errors)[raw_text_len:]
|
|
if verbose:
|
|
print('\nRaw Generate: ', trim_decode_tokens)
|
|
|
|
end_reason = f'Gen length {len(tokens)}'
|
|
for stop_word in stop_words:
|
|
trim_decode_tokens = trim_decode_tokens.replace(stop_word, '').strip()
|
|
for eod_word in eod_words:
|
|
if eod_word in trim_decode_tokens:
|
|
end_reason = f'Gen {eod_word!r}'
|
|
trim_decode_tokens = trim_decode_tokens.split(eod_word)[0]
|
|
trim_decode_tokens = trim_decode_tokens.strip()
|
|
if verbose:
|
|
print('\nEnd Reason:', end_reason)
|
|
print('\nGenerate: ', trim_decode_tokens)
|
|
|
|
if return_end_reason:
|
|
return trim_decode_tokens, end_reason
|
|
else:
|
|
return trim_decode_tokens
|
|
|
|
|
|
def _decode_chatml(tokens: List[int],
|
|
*,
|
|
stop_words: List[str],
|
|
eod_token_ids: List[int],
|
|
tokenizer: PreTrainedTokenizer,
|
|
raw_text_len: int,
|
|
context_length: int,
|
|
verbose: bool = False,
|
|
return_end_reason: bool = False,
|
|
errors: str = 'replace'):
|
|
end_reason = f'Gen length {len(tokens)}'
|
|
eod_token_idx = context_length
|
|
for eod_token_idx in range(context_length, len(tokens)):
|
|
if tokens[eod_token_idx] in eod_token_ids:
|
|
end_reason = f'Gen {tokenizer.decode([tokens[eod_token_idx]])!r}'
|
|
break
|
|
|
|
trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx],
|
|
errors=errors)[raw_text_len:]
|
|
if verbose:
|
|
print('\nRaw Generate w/o EOD:',
|
|
tokenizer.decode(tokens, errors=errors)[raw_text_len:])
|
|
print('\nRaw Generate:', trim_decode_tokens)
|
|
print('\nEnd Reason:', end_reason)
|
|
for stop_word in stop_words:
|
|
trim_decode_tokens = trim_decode_tokens.replace(stop_word, '').strip()
|
|
trim_decode_tokens = trim_decode_tokens.strip()
|
|
if verbose:
|
|
print('\nGenerate:', trim_decode_tokens)
|
|
|
|
if return_end_reason:
|
|
return trim_decode_tokens, end_reason
|
|
else:
|
|
return trim_decode_tokens
|
|
|
|
|
|
def decode_tokens(
|
|
tokens: Union[torch.LongTensor, TokensType],
|
|
tokenizer: PreTrainedTokenizer,
|
|
raw_text_len: int,
|
|
context_length: int,
|
|
chat_format: str,
|
|
verbose: bool = False,
|
|
return_end_reason: bool = False,
|
|
errors: str = 'replace',
|
|
) -> str:
|
|
if torch.is_tensor(tokens):
|
|
tokens = tokens.cpu().numpy().tolist()
|
|
|
|
if chat_format == 'chatml':
|
|
return _decode_chatml(
|
|
tokens,
|
|
stop_words=[],
|
|
eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
|
|
tokenizer=tokenizer,
|
|
raw_text_len=raw_text_len,
|
|
context_length=context_length,
|
|
verbose=verbose,
|
|
return_end_reason=return_end_reason,
|
|
errors=errors,
|
|
)
|
|
elif chat_format == 'raw':
|
|
return _decode_default(
|
|
tokens,
|
|
stop_words=['<|endoftext|>'],
|
|
eod_words=['<|endoftext|>'],
|
|
tokenizer=tokenizer,
|
|
raw_text_len=raw_text_len,
|
|
verbose=verbose,
|
|
return_end_reason=return_end_reason,
|
|
errors=errors,
|
|
)
|
|
else:
|
|
raise NotImplementedError(f'Unknown chat format {chat_format!r}')
|