mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
174 lines
6.2 KiB
Python
174 lines
6.2 KiB
Python
import random
|
|
import sys
|
|
import unittest
|
|
import warnings
|
|
from os import environ
|
|
|
|
from datasets import Dataset, DatasetDict
|
|
from mmengine.config import read_base
|
|
from tqdm import tqdm
|
|
|
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
|
|
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
|
|
|
|
|
def reload_datasets():
|
|
modules_to_remove = [
|
|
module_name for module_name in sys.modules
|
|
if module_name.startswith('configs.datasets')
|
|
]
|
|
|
|
for module_name in modules_to_remove:
|
|
del sys.modules[module_name]
|
|
|
|
with read_base():
|
|
from configs.datasets.gsm8k.gsm8k_gen import gsm8k_datasets
|
|
|
|
return sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
|
|
|
|
|
|
def load_datasets_conf(source):
|
|
environ['DATASET_SOURCE'] = source
|
|
datasets_conf = reload_datasets()
|
|
return datasets_conf
|
|
|
|
|
|
def load_datasets(source, conf):
|
|
environ['DATASET_SOURCE'] = source
|
|
if 'lang' in conf:
|
|
dataset = conf['type'].load(path=conf['path'], lang=conf['lang'])
|
|
return dataset
|
|
|
|
if 'setting_name' in conf:
|
|
dataset = conf['type'].load(path=conf['path'],
|
|
name=conf['name'],
|
|
setting_name=conf['setting_name'])
|
|
return dataset
|
|
|
|
if 'name' in conf:
|
|
dataset = conf['type'].load(path=conf['path'], name=conf['name'])
|
|
return dataset
|
|
|
|
try:
|
|
dataset = conf['type'].load(path=conf['path'])
|
|
except Exception as ex:
|
|
print(ex)
|
|
dataset = conf['type'].load(**conf)
|
|
|
|
return dataset
|
|
|
|
|
|
def clean_string(value):
|
|
"""Helper function to clean and normalize string data.
|
|
|
|
It strips leading and trailing whitespace and replaces multiple whitespace
|
|
characters with a single space.
|
|
"""
|
|
if isinstance(value, str):
|
|
return ' '.join(value.split())
|
|
return value
|
|
|
|
|
|
class TestingOmDatasets(unittest.TestCase):
|
|
|
|
def test_datasets(self):
|
|
# 加载 OpenMind 和 Local 数据集配置
|
|
om_datasets_conf = load_datasets_conf('OpenMind')
|
|
local_datasets_conf = load_datasets_conf('Local')
|
|
|
|
# 初始化成功和失败的数据集列表
|
|
successful_comparisons = []
|
|
failed_comparisons = []
|
|
|
|
def compare_datasets(om_conf, local_conf):
|
|
openmind_path_name = f"{om_conf.get('path')}/{om_conf.get('name', '')}\t{om_conf.get('lang', '')}"
|
|
local_path_name = f"{local_conf.get('path')}/{local_conf.get('name', '')}\t{local_conf.get('lang', '')}"
|
|
# 断言类型一致
|
|
assert om_conf['type'] == local_conf['type'], "Data types do not match"
|
|
print(openmind_path_name, local_path_name)
|
|
try:
|
|
om_dataset = load_datasets('OpenMind', om_conf)
|
|
local_dataset = load_datasets('Local', local_conf)
|
|
_check_data(om_dataset, local_dataset, sample_size=sample_size)
|
|
return 'success', f'{openmind_path_name} | {local_path_name}'
|
|
except Exception as exception:
|
|
print(exception)
|
|
return 'failure', f'{openmind_path_name} is not the same as {local_path_name}'
|
|
|
|
with ThreadPoolExecutor(thread) as executor:
|
|
futures = {
|
|
executor.submit(compare_datasets, om_conf, local_conf): (om_conf, local_conf)
|
|
for om_conf, local_conf in zip(om_datasets_conf, local_datasets_conf)
|
|
}
|
|
|
|
for future in tqdm(as_completed(futures), total=len(futures)):
|
|
result, message = future.result()
|
|
if result == 'success':
|
|
successful_comparisons.append(message)
|
|
else:
|
|
failed_comparisons.append(message)
|
|
|
|
# 输出测试总结
|
|
total_datasets = len(om_datasets_conf)
|
|
print(f"All {total_datasets} datasets")
|
|
print(f"OK {len(successful_comparisons)} datasets")
|
|
for success in successful_comparisons:
|
|
print(f" {success}")
|
|
print(f"Fail {len(failed_comparisons)} datasets")
|
|
for failure in failed_comparisons:
|
|
print(f" {failure}")
|
|
|
|
|
|
def _check_data(om_dataset: Dataset | DatasetDict,
|
|
oc_dataset: Dataset | DatasetDict,
|
|
sample_size):
|
|
assert type(om_dataset) == type(
|
|
oc_dataset
|
|
), f'Dataset type not match: {type(om_dataset)} != {type(oc_dataset)}'
|
|
|
|
# match DatasetDict
|
|
if isinstance(oc_dataset, DatasetDict):
|
|
assert om_dataset.keys() == oc_dataset.keys(
|
|
), f'DatasetDict not match: {om_dataset.keys()} != {oc_dataset.keys()}'
|
|
|
|
for key in om_dataset.keys():
|
|
_check_data(om_dataset[key], oc_dataset[key], sample_size=sample_size)
|
|
|
|
elif isinstance(oc_dataset, Dataset):
|
|
# match by cols
|
|
assert set(om_dataset.column_names) == set(
|
|
oc_dataset.column_names
|
|
), f'Column names do not match: {om_dataset.column_names} != {oc_dataset.column_names}'
|
|
|
|
# Check that the number of rows is the same
|
|
assert len(om_dataset) == len(
|
|
oc_dataset
|
|
), f'Number of rows do not match: {len(om_dataset)} != {len(oc_dataset)}'
|
|
|
|
# Randomly sample indices
|
|
sample_indices = random.sample(range(len(om_dataset)),
|
|
min(sample_size, len(om_dataset)))
|
|
|
|
for i, idx in enumerate(sample_indices):
|
|
for col in om_dataset.column_names:
|
|
om_value = clean_string(str(om_dataset[col][idx]))
|
|
oc_value = clean_string(str(oc_dataset[col][idx]))
|
|
try:
|
|
assert om_value == oc_value, f"Value mismatch in column '{col}', index {idx}: {om_value} != {oc_value}"
|
|
except AssertionError as e:
|
|
print(f"Assertion failed for column '{col}', index {idx}")
|
|
print(f"om_data: {om_dataset[idx]}")
|
|
print(f'oc_data: {oc_dataset[idx]}')
|
|
print(f'om_value: {om_value} ({type(om_value)})')
|
|
print(f'oc_value: {oc_value} ({type(oc_value)})')
|
|
raise e
|
|
else:
|
|
raise ValueError(f'Datasets type not supported {type(om_dataset)}')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
sample_size = 100
|
|
thread = 1
|
|
unittest.main()
|