mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* [Dataset] Add SmolInstruct, Update Chembench * Add dataset metadata * update * update * update
80 lines
3.2 KiB
Python
80 lines
3.2 KiB
Python
from opencompass.openicl import AccEvaluator
|
|
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
|
from opencompass.openicl.icl_retriever import ZeroRetriever, FixKRetriever
|
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
|
from opencompass.datasets import SmolInstructDataset
|
|
from opencompass.datasets.smolinstruct import smolinstruct_acc_postprocess
|
|
|
|
pp_acc_reader_cfg = dict(
|
|
input_columns=['input'],
|
|
output_column='output',
|
|
train_split='validation')
|
|
|
|
pp_acc_hint_dict = {
|
|
'BBBP': """You are an expert chemist. Given the smiles representation of the compound, your task is to predict whether blood-brain barrier permeability (BBBP) is a property of the compound.
|
|
The input contains the compound. Your reply should contain only Yes or No. Your reply must be valid and chemically reasonable.""",
|
|
'ClinTox': """You are an expert chemist. Given the smiles representation of the compound, your task is to predict whether the compound is toxic.
|
|
The input contains the compound. Your reply should contain only Yes or No. Your reply must be valid and chemically reasonable.""",
|
|
'HIV': """You are an expert chemist. Given the smiles representation of the compound, your task is to predict whether the compound serve as an inhibitor of HIV replication.
|
|
The input contains the compound. Your reply should contain only Yes or No. Your reply must be valid and chemically reasonable.""",
|
|
'SIDER': """You are an expert chemist. Given the smiles representation of the compound, your task is to predict whether the compound has any side effects.
|
|
The input contains the compound. Your reply should contain only Yes or No. Your reply must be valid and chemically reasonable.""",
|
|
}
|
|
|
|
name_dict = {
|
|
'BBBP': 'property_prediction-bbbp',
|
|
'ClinTox': 'property_prediction-clintox',
|
|
'HIV': 'property_prediction-hiv',
|
|
'SIDER': 'property_prediction-sider',
|
|
}
|
|
|
|
pp_acc_datasets = []
|
|
for _name in pp_acc_hint_dict:
|
|
_hint = pp_acc_hint_dict[_name]
|
|
|
|
pp_acc_infer_cfg = dict(
|
|
ice_template=dict(
|
|
type=PromptTemplate,
|
|
template=dict(round=[
|
|
dict(
|
|
role='HUMAN',
|
|
prompt=f'{_hint}\nQuestion: {{input}}\nAnswer: '
|
|
),
|
|
dict(role='BOT', prompt='{output}\n')
|
|
]),
|
|
),
|
|
prompt_template=dict(
|
|
type=PromptTemplate,
|
|
template=dict(
|
|
begin='</E>',
|
|
round=[
|
|
dict(
|
|
role='HUMAN',
|
|
prompt=f'{_hint}\nQuestion: {{input}}\nAnswer: '
|
|
),
|
|
],
|
|
),
|
|
ice_token='</E>',
|
|
),
|
|
retriever=dict(type=FixKRetriever, fix_id_list=[0]),
|
|
inferencer=dict(type=GenInferencer),
|
|
)
|
|
|
|
pp_acc_eval_cfg = dict(
|
|
evaluator=dict(type=AccEvaluator),
|
|
pred_postprocessor=dict(type=smolinstruct_acc_postprocess)
|
|
)
|
|
|
|
pp_acc_datasets.append(
|
|
dict(
|
|
abbr=f'PP-{_name}',
|
|
type=SmolInstructDataset,
|
|
path='osunlp/SMolInstruct',
|
|
name=name_dict[_name],
|
|
reader_cfg=pp_acc_reader_cfg,
|
|
infer_cfg=pp_acc_infer_cfg,
|
|
eval_cfg=pp_acc_eval_cfg,
|
|
))
|
|
|
|
del _name, _hint
|