mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
38 lines
3.2 KiB
Python
38 lines
3.2 KiB
Python
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
|
from opencompass.datasets import MATHDataset, MATHInternEvaluator, math_intern_postprocess
|
|
|
|
math_reader_cfg = dict(input_columns=['problem'], output_column='solution')
|
|
|
|
math_infer_cfg = dict(
|
|
prompt_template=dict(
|
|
type=PromptTemplate,
|
|
template=dict(round=[
|
|
dict(role="HUMAN", prompt="Problem:\nFind the domain of the expression $\\frac{{\sqrt{{x-2}}}}{{\sqrt{{5-x}}}}$.}}\nSolution:"),
|
|
dict(role="BOT", prompt="The expressions inside each square root must be non-negative. Therefore, $x-2 \ge 0$, so $x\ge2$, and $5 - x \ge 0$, so $x \le 5$. Also, the denominator cannot be equal to zero, so $5-x>0$, which gives $x<5$. Therefore, the domain of the expression is $\\boxed{{[2,5)}}$.\nFinal Answer: The final answer is $[2,5)$. I hope it is correct.\n"),
|
|
dict(role="HUMAN", prompt="Problem:\nIf $\det \mathbf{{A}} = 2$ and $\det \mathbf{{B}} = 12,$ then find $\det (\mathbf{{A}} \mathbf{{B}}).$\nSolution:"),
|
|
dict(role="BOT", prompt="We have that $\det (\mathbf{{A}} \mathbf{{B}}) = (\det \mathbf{{A}})(\det \mathbf{{B}}) = (2)(12) = \\boxed{{24}}.$\nFinal Answer: The final answer is $24$. I hope it is correct.\n"),
|
|
dict(role="HUMAN", prompt="Problem:\nTerrell usually lifts two 20-pound weights 12 times. If he uses two 15-pound weights instead, how many times must Terrell lift them in order to lift the same total weight?\nSolution:"),
|
|
dict(role="BOT", prompt="If Terrell lifts two 20-pound weights 12 times, he lifts a total of $2\cdot 12\cdot20=480$ pounds of weight. If he lifts two 15-pound weights instead for $n$ times, he will lift a total of $2\cdot15\cdot n=30n$ pounds of weight. Equating this to 480 pounds, we can solve for $n$: \\begin{{align*}} 30n&=480\\\\ \Rightarrow\qquad n&=480/30=\\boxed{{16}} \end{{align*}}\nFinal Answer: The final answer is $16$. I hope it is correct.\n"),
|
|
dict(role="HUMAN", prompt="Problem:\nIf the system of equations: \\begin{{align*}} 6x-4y&=a,\\\\ 6y-9x &=b. \end{{align*}}has a solution $(x, y)$ where $x$ and $y$ are both nonzero, find $\\frac{{a}}{{b}},$ assuming $b$ is nonzero.\nSolution:"),
|
|
dict(role="BOT", prompt="If we multiply the first equation by $-\\frac{{3}}{{2}}$, we obtain $$6y-9x=-\\frac{{3}}{{2}}a.$$Since we also know that $6y-9x=b$, we have $$-\\frac{{3}}{{2}}a=b\Rightarrow\\frac{{a}}{{b}}=\\boxed{{-\\frac{{2}}{{3}}}}.$$\nFinal Answer: The final answer is $-\\frac{{2}}{{3}}$. I hope it is correct.\n"),
|
|
dict(role="HUMAN", prompt="Problem:\n{problem}\nSolution:\n"),
|
|
])),
|
|
retriever=dict(type=ZeroRetriever),
|
|
inferencer=dict(type=GenInferencer, max_out_len=512))
|
|
|
|
# postprocess v2
|
|
math_eval_cfg = dict(
|
|
evaluator=dict(type=MATHInternEvaluator), pred_postprocessor=dict(type=math_intern_postprocess))
|
|
|
|
math_datasets = [
|
|
dict(
|
|
type=MATHDataset,
|
|
abbr='math',
|
|
path='./data/math/math.json',
|
|
reader_cfg=math_reader_cfg,
|
|
infer_cfg=math_infer_cfg,
|
|
eval_cfg=math_eval_cfg)
|
|
]
|