OpenCompass/configs/datasets/hellaswag/hellaswag_10shot_gen_e42710.py
2024-03-04 14:42:36 +08:00

59 lines
1.9 KiB
Python

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import FixKRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import hellaswagDatasetwithICE
from opencompass.utils.text_postprocessors import first_option_postprocess
hellaswag_reader_cfg = dict(
input_columns=["ctx", "A", "B", "C", "D"],
output_column="label",
train_split="train",
test_split="val",
)
hellaswag_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role="HUMAN", prompt=f"{{ctx}}\nA) {{A}}\nB) {{B}}\nC) {{C}}\nD) {{D}}\nWhat is the right option?"),
dict(role="BOT", prompt="{label}\n"),
]
),
),
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(role="HUMAN", prompt="Continue the following text without adding any additional information or formatting:\n"),
"</E>",
],
round=[
dict(role="HUMAN", prompt=f"{{ctx}}\nA) {{A}}\nB) {{B}}\nC) {{C}}\nD) {{D}}\nWhat is the right option?"),
dict(role="BOT", prompt="{label}\n"),
],
),
ice_token="</E>",
),
retriever=dict(type=FixKRetriever, fix_id_list=list(range(10))),
inferencer=dict(type=GenInferencer),
)
hellaswag_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role="BOT",
pred_postprocessor=dict(type=first_option_postprocess, options="ABCD"),
)
hellaswag_datasets = [
dict(
abbr="hellaswag",
type=hellaswagDatasetwithICE,
path="./data/hellaswag/",
reader_cfg=hellaswag_reader_cfg,
infer_cfg=hellaswag_infer_cfg,
eval_cfg=hellaswag_eval_cfg,
)
]