OpenCompass/configs/eval_subjective_judge_pandalm.py
bittersweet1999 2d4e559763
[Feature] Add multi-model judge and fix some problems (#1016)
* support multi-model judge and moe judge

* test_moe

* test_moe

* test

* add moe judge

* support multi-judge-model
2024-04-02 11:52:06 +08:00

93 lines
2.8 KiB
Python

from mmengine.config import read_base
with read_base():
from .datasets.subjective.alignbench.alignbench_judgeby_critiquellm import subjective_datasets
from opencompass.models import HuggingFaceCausalLM, HuggingFace, OpenAIAllesAPIN, HuggingFaceChatGLM3
from opencompass.partitioners import NaivePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.runners import LocalRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import AlignmentBenchSummarizer
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
]
)
# -------------Inference Stage ----------------------------------------
# For subjective evaluation, we often set do sample for models
models = [
dict(
type=HuggingFaceChatGLM3,
abbr='chatglm3-6b-hf',
path='THUDM/chatglm3-6b',
tokenizer_path='THUDM/chatglm3-6b',
model_kwargs=dict(
device_map='auto',
trust_remote_code=True,
),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
trust_remote_code=True,
),
generation_kwargs=dict(
do_sample=True,
),
meta_template=api_meta_template,
max_out_len=2048,
max_seq_len=4096,
batch_size=1,
run_cfg=dict(num_gpus=1, num_procs=1),
)
]
datasets = [*subjective_datasets]
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=SlurmSequentialRunner,
partition='llmeval',
quotatype='auto',
max_num_workers=256,
task=dict(type=OpenICLInferTask),
),
)
# -------------Evalation Stage ----------------------------------------
## ------------- JudgeLLM Configuration
judge_models = [dict(
type=HuggingFaceCausalLM,
abbr='pandalm-7b-v1-hf',
path='WeOpenML/PandaLM-7B-v1',
tokenizer_path='WeOpenML/PandaLM-7B-v1',
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
trust_remote_code=True,
use_fast=False,
),
max_out_len=512,
max_seq_len=2048,
batch_size=8,
model_kwargs=dict(device_map='auto', trust_remote_code=True),
run_cfg=dict(num_gpus=1, num_procs=1),
)]
## ------------- Evaluation Configuration
eval = dict(
partitioner=dict(type=SubjectiveNaivePartitioner, mode='singlescore', models=models, judge_models=judge_models),
runner=dict(type=LocalRunner, max_num_workers=2, task=dict(type=SubjectiveEvalTask)),
)
summarizer = dict(type=AlignmentBenchSummarizer)
work_dir = 'outputs/pandalm'