mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
253 lines
7.9 KiB
Python
253 lines
7.9 KiB
Python
import re
|
||
|
||
import pandas as pd
|
||
from datasets import Dataset
|
||
|
||
from opencompass.openicl import BaseEvaluator
|
||
from opencompass.registry import LOAD_DATASET, TEXT_POSTPROCESSORS
|
||
from opencompass.utils import get_data_path, get_logger
|
||
|
||
from .base import BaseDataset
|
||
|
||
|
||
def _parse(item, prompt_mode):
|
||
# 1. 从 Choices 字符串里按行拆分出每个选项
|
||
raw_choices = item.get('Choices', '')
|
||
# 去掉首尾空白并按行分割,过滤掉空行
|
||
lines = [
|
||
line.strip() for line in raw_choices.strip().splitlines()
|
||
if line.strip()
|
||
]
|
||
|
||
# 2. 用正则去掉行首的 "A. "/"B. " 等前缀,只保留选项内容
|
||
options_list = [re.sub(r'^[A-Z]\.\s*', '', line) for line in lines]
|
||
|
||
# 3. 写回 item
|
||
item['options'] = options_list
|
||
|
||
# 4. 重建带标号的选项字符串
|
||
options_str = '\n'.join(f'{chr(65 + i)}. {opt}'
|
||
for i, opt in enumerate(options_list))
|
||
|
||
# 5. 构造 question、label、prompt_mode、start、end
|
||
item['question'] = f"{item['Question']}\n{options_str}"
|
||
item['label'] = item['Answer']
|
||
item['prompt_mode'] = prompt_mode
|
||
item['start'] = chr(65)
|
||
item['end'] = chr(65 + len(options_list) - 1)
|
||
return item
|
||
|
||
|
||
@LOAD_DATASET.register_module()
|
||
class NejmaibenchDataset(BaseDataset):
|
||
|
||
@staticmethod
|
||
def load(path: str, prompt_mode: str = 'zero-shot', **kwargs):
|
||
# 读取 CSV 文件为 DataFrame,并将 NaN 转为空字符串
|
||
path = get_data_path(path)
|
||
df = pd.read_csv(path, encoding='utf-8')
|
||
df = df.fillna('')
|
||
|
||
# 转换为字典列表
|
||
data_list = df.to_dict(orient='records')
|
||
|
||
# 将数据列表包装为 Dataset
|
||
dataset = Dataset.from_list(data_list)
|
||
|
||
# 根据提示模式进行解析
|
||
if prompt_mode == 'zero-shot':
|
||
dataset = dataset.map(lambda item: _parse(item, prompt_mode))
|
||
elif prompt_mode == 'few-shot':
|
||
pass # TODO: Implement few-shot prompt handling
|
||
return dataset
|
||
|
||
|
||
class NejmaibenchEvaluator(BaseEvaluator):
|
||
|
||
def score(self, predictions, references, test_set):
|
||
method = test_set['prompt_mode'][0]
|
||
|
||
if len(predictions) != len(references):
|
||
return {'error': 'preds and refrs have different length'}
|
||
correct = 0
|
||
count = 0
|
||
details = []
|
||
for idx, (i, j) in enumerate(zip(predictions, references)):
|
||
i = answer_cleansing(method, i, test_set['options'][idx],
|
||
test_set['label'][idx])
|
||
detail = {
|
||
'pred': i,
|
||
'answer': j,
|
||
'correct': False,
|
||
'Subject': test_set['Subject'][idx],
|
||
}
|
||
count += 1
|
||
if i == j:
|
||
correct += 1
|
||
detail['correct'] = True
|
||
details.append(detail)
|
||
result = {'accuracy': 100 * correct / count, 'details': details}
|
||
return result
|
||
|
||
|
||
@TEXT_POSTPROCESSORS.register_module()
|
||
def answer_cleansing(
|
||
method: str,
|
||
prediction: str,
|
||
options: list,
|
||
label: str,
|
||
) -> str:
|
||
|
||
# Clean up unwanted phrases in the prediction
|
||
for unwanted_phrase in [
|
||
'I understand',
|
||
'A through J',
|
||
'A through E',
|
||
'A through D',
|
||
]:
|
||
prediction = prediction.replace(unwanted_phrase, '')
|
||
|
||
options_num = len(options)
|
||
options = [chr(65 + i) for i in range(options_num)]
|
||
options_str = r'\b(' + '|'.join(options) + r')\b'
|
||
prediction = re.findall(options_str, prediction)
|
||
|
||
if len(prediction) == 0:
|
||
prediction = []
|
||
return prediction
|
||
else:
|
||
# If there is a "label" and its length is 1,
|
||
# process prediction accordingly
|
||
if len(label) == 1:
|
||
if method == 'few-shot':
|
||
answer_flag = True if len(prediction) > 1 else False
|
||
# choose the first or last element based on the answer_flag
|
||
if answer_flag:
|
||
prediction = [prediction[0]]
|
||
else:
|
||
prediction = [prediction[-1]]
|
||
elif method == 'zero-shot':
|
||
# choose the first element in list
|
||
prediction = [prediction[0]]
|
||
else:
|
||
raise ValueError('Method is not properly defined ...')
|
||
|
||
# Remove trailing period if it exists
|
||
if prediction[0] and prediction[0].endswith('.'):
|
||
prediction[0] = prediction[0][:-1]
|
||
|
||
return prediction[0]
|
||
|
||
|
||
def _generic_llmjudge_postprocess(judgement: str):
|
||
match = re.search(r'(A|B)', judgement)
|
||
grade_letter = (match.group(0) if match else 'B'
|
||
) # Default to "INCORRECT" if no match
|
||
return grade_letter
|
||
|
||
|
||
def nejmaibench_llmjudge_postprocess(
|
||
output: dict,
|
||
output_path: str,
|
||
dataset: Dataset,
|
||
) -> dict:
|
||
# Get the original dataset
|
||
original_dataset = dataset.reader.dataset['test']
|
||
|
||
judged_answers = []
|
||
original_responses = []
|
||
references = []
|
||
details = []
|
||
|
||
# Initialize statistics dictionaries
|
||
stats = {'Subject': {}}
|
||
|
||
total_correct = 0
|
||
total_count = 0
|
||
|
||
# Process each sample
|
||
for k, v in output.items():
|
||
idx = int(k) # Convert key to integer for indexing
|
||
original_responses.append(v['prediction'])
|
||
|
||
processed_judge = _generic_llmjudge_postprocess(v['prediction'])
|
||
|
||
# Get category information from the dataset
|
||
sample = original_dataset[idx]
|
||
subject = sample.get('Subject', 'unknown')
|
||
|
||
# Initialize category stats if not exists
|
||
for level, key in [
|
||
('Subject', subject),
|
||
]:
|
||
if key not in stats[level]:
|
||
stats[level][key] = {'correct': 0, 'total': 0}
|
||
|
||
# Record the judgment
|
||
if processed_judge is not None:
|
||
judged_answers.append(processed_judge)
|
||
try:
|
||
gold = v['gold']
|
||
references.append(gold)
|
||
except KeyError:
|
||
get_logger().warning(
|
||
f'No gold answer for {k}, use empty string as reference!')
|
||
gold = ''
|
||
references.append('')
|
||
|
||
# Check if the answer is correct (A means correct)
|
||
is_correct = processed_judge == 'A'
|
||
total_count += 1
|
||
|
||
if is_correct:
|
||
total_correct += 1
|
||
# Update category stats
|
||
for level, key in [
|
||
('Subject', subject),
|
||
]:
|
||
stats[level][key]['correct'] += 1
|
||
|
||
# Update category totals
|
||
for level, key in [
|
||
('Subject', subject),
|
||
]:
|
||
stats[level][key]['total'] += 1
|
||
# Add to details
|
||
details.append({
|
||
'id': k,
|
||
'question': sample['question'],
|
||
'options': sample['options'],
|
||
'origin_prompt': v['origin_prompt'],
|
||
'llm_judge': processed_judge,
|
||
'gold': gold,
|
||
'is_correct': is_correct,
|
||
'Subject': subject,
|
||
})
|
||
|
||
# Calculate overall accuracy with two decimal places
|
||
overall_accuracy = (round(
|
||
(total_correct / total_count * 100), 2) if total_count > 0 else 0.00)
|
||
|
||
# Initialize results dictionary
|
||
results = {
|
||
'accuracy': overall_accuracy,
|
||
'total_correct': total_correct,
|
||
'total_count': total_count,
|
||
'details': details,
|
||
}
|
||
|
||
# Calculate accuracy for each category and flatten into results
|
||
for level in stats:
|
||
for key, value in stats[level].items():
|
||
if value['total'] > 0:
|
||
# Calculate accuracy with two decimal places
|
||
accuracy = round((value['correct'] / value['total'] * 100), 2)
|
||
|
||
# Create a flattened key for the category
|
||
flat_key = f'nejmaibench-{key}'
|
||
|
||
# Add to results
|
||
results[flat_key] = accuracy
|
||
|
||
return results
|