mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* Add ToT method * Update ToT * Update ToT * Update ToT * Update ToT * Update ToT * Add Koashi * Update Kaoshi * Update Kaoshi * Update kaoshi * Update kaoshi * Update Kaoshi * Update Kaoshi * Update Kaoshi * Update Kaoshi * update Kaoshi * update * update * fix --------- Co-authored-by: gaotongxiao <gaotongxiao@gmail.com>
139 lines
4.9 KiB
Python
139 lines
4.9 KiB
Python
import json
|
||
import re
|
||
|
||
from datasets import Dataset
|
||
|
||
from opencompass.openicl.icl_evaluator import BaseEvaluator
|
||
|
||
from .base import BaseDataset
|
||
|
||
|
||
def get_number(options):
|
||
|
||
result_string = ''
|
||
for i, option in enumerate(options, start=65):
|
||
result_string += f'{chr(i)}. {option}\n'
|
||
return result_string
|
||
|
||
|
||
class KaoshiDataset(BaseDataset):
|
||
|
||
@staticmethod
|
||
def load(path: str, name: str):
|
||
data_list = []
|
||
with open(path, encoding='utf-8') as f:
|
||
for line in f:
|
||
data = json.loads(line)
|
||
if name in ['single_choice', 'multi_choice']:
|
||
data['question'] = data['question'].strip(
|
||
) + '\n' + get_number(data['options'])
|
||
data_list.append(data)
|
||
return Dataset.from_list(data_list)
|
||
|
||
|
||
valid_kaoshi_question_types = [
|
||
'single_choice', 'multi_choice', 'multi_question_choice',
|
||
'five_out_of_seven', 'cloze', 'judgment'
|
||
]
|
||
|
||
|
||
class KaoshiEvaluator(BaseEvaluator):
|
||
|
||
def __init__(self, question_type) -> None:
|
||
super().__init__()
|
||
assert question_type in valid_kaoshi_question_types
|
||
self.question_type = question_type
|
||
|
||
def do_predictions_postprocess(self, model_output, answer_lenth=None):
|
||
if self.question_type == 'single_choice':
|
||
model_answer = []
|
||
temp = re.findall(r'[A-D]', model_output[::-1])
|
||
if len(temp) != 0:
|
||
model_answer.append(temp[0])
|
||
|
||
elif self.question_type == 'multi_question_choice':
|
||
model_answer = []
|
||
temp = re.findall(r'【答案】\s*[::]*\s*[A-Z]', model_output)
|
||
|
||
if len(temp) == answer_lenth:
|
||
for t in temp:
|
||
model_answer.append(re.findall(r'[A-Z]', t)[0])
|
||
else:
|
||
temp = re.findall(r'[A-Z]', model_output)
|
||
if len(temp) > 0:
|
||
for k in range(min(len(temp), answer_lenth)):
|
||
model_answer.append(temp[k])
|
||
|
||
elif self.question_type == 'multi_choice':
|
||
model_answer = []
|
||
answer = ''
|
||
content = re.sub(r'\s+', '', model_output)
|
||
answer_index = content.find('【答案】')
|
||
if answer_index > 0:
|
||
temp = content[answer_index:]
|
||
if len(re.findall(r'[A-D]', temp)) > 0:
|
||
for t in re.findall(r'[A-D]', temp):
|
||
answer += t
|
||
else:
|
||
temp = content[-10:]
|
||
if len(re.findall(r'[A-D]', temp)) > 0:
|
||
for t in re.findall(r'[A-D]', temp):
|
||
answer += t
|
||
if len(answer) != 0:
|
||
model_answer.append(answer)
|
||
|
||
elif self.question_type == 'five_out_of_seven':
|
||
model_answer = []
|
||
temp = re.findall(r'[A-G]', model_output)
|
||
if len(temp) > 0:
|
||
for k in range(min(5, len(temp))):
|
||
model_answer.append(temp[k])
|
||
|
||
elif self.question_type in ['cloze', 'judgment']:
|
||
model_answer = []
|
||
temp = re.findall(r'【答案】(.*?) ', model_output)
|
||
if len(temp) > 0:
|
||
model_answer.append(temp[0])
|
||
|
||
return model_answer
|
||
|
||
def ensure_same_length(self, pred, refr):
|
||
if len(pred) == len(refr):
|
||
return pred
|
||
return ['Z'] * len(refr)
|
||
|
||
def score(self, predictions, references):
|
||
if self.question_type not in valid_kaoshi_question_types:
|
||
return {'score': 100}
|
||
elif self.question_type == 'multi_choice':
|
||
correct_score, total_score = 0, 0
|
||
for pred, refr in zip(predictions, references):
|
||
pred = self.do_predictions_postprocess(pred)
|
||
pred = self.ensure_same_length(pred, refr)
|
||
for p, r in zip(pred, refr):
|
||
if p == r:
|
||
correct_score += 2
|
||
else:
|
||
for i in p:
|
||
if i not in r:
|
||
break
|
||
else:
|
||
correct_score += 1
|
||
total_score += 2
|
||
return {'score': correct_score / total_score * 100}
|
||
else:
|
||
correct_score, total_score = 0, 0
|
||
for pred, refr in zip(predictions, references):
|
||
if self.question_type == 'multi_question_choice':
|
||
pred = self.do_predictions_postprocess(pred, len(refr))
|
||
else:
|
||
pred = self.do_predictions_postprocess(pred)
|
||
if self.question_type in ['cloze', 'judgment']:
|
||
refr = [refr]
|
||
pred = self.ensure_same_length(pred, refr)
|
||
for p, r in zip(pred, refr):
|
||
if p == r:
|
||
correct_score += 1
|
||
total_score += 1
|
||
return {'score': correct_score / total_score * 100}
|