mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
107 lines
3.3 KiB
Python
107 lines
3.3 KiB
Python
from os import getenv as gv
|
|
from opencompass.models import HuggingFaceCausalLM
|
|
from mmengine.config import read_base
|
|
|
|
with read_base():
|
|
from .datasets.subjective.compassarena.compassarena_compare import subjective_datasets
|
|
|
|
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
|
|
from opencompass.partitioners import NaivePartitioner, SizePartitioner
|
|
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
|
|
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
|
|
from opencompass.runners import LocalRunner
|
|
from opencompass.runners import SlurmSequentialRunner
|
|
from opencompass.tasks import OpenICLInferTask
|
|
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
|
|
from opencompass.summarizers import CompassArenaSummarizer
|
|
|
|
api_meta_template = dict(
|
|
round=[
|
|
dict(role='HUMAN', api_role='HUMAN'),
|
|
dict(role='BOT', api_role='BOT', generate=True),
|
|
],
|
|
reserved_roles=[dict(role='SYSTEM', api_role='SYSTEM')],
|
|
)
|
|
|
|
# -------------Inference Stage ----------------------------------------
|
|
|
|
# For subjective evaluation, we often set do sample for models
|
|
models = [
|
|
dict(
|
|
type=HuggingFaceChatGLM3,
|
|
abbr='chatglm3-6b-hf',
|
|
path='THUDM/chatglm3-6b',
|
|
tokenizer_path='THUDM/chatglm3-6b',
|
|
model_kwargs=dict(
|
|
device_map='auto',
|
|
trust_remote_code=True,
|
|
),
|
|
tokenizer_kwargs=dict(
|
|
padding_side='left',
|
|
truncation_side='left',
|
|
trust_remote_code=True,
|
|
),
|
|
generation_kwargs=dict(
|
|
do_sample=True,
|
|
),
|
|
meta_template=api_meta_template,
|
|
max_out_len=2048,
|
|
max_seq_len=4096,
|
|
batch_size=1,
|
|
run_cfg=dict(num_gpus=1, num_procs=1),
|
|
)
|
|
]
|
|
|
|
datasets = [*subjective_datasets]
|
|
|
|
gpt4 = dict(
|
|
abbr='gpt4-turbo',
|
|
type=OpenAI,
|
|
path='gpt-4-1106-preview',
|
|
key='', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
|
|
meta_template=api_meta_template,
|
|
query_per_second=1,
|
|
max_out_len=2048,
|
|
max_seq_len=4096,
|
|
batch_size=4,
|
|
retry=20,
|
|
temperature=1,
|
|
) # Re-inference gpt4's predictions or you can choose to use the pre-commited gpt4's predictions
|
|
|
|
# -------------Evalation Stage ----------------------------------------
|
|
|
|
## ------------- JudgeLLM Configuration
|
|
judge_models = [dict(
|
|
abbr='GPT4-Turbo',
|
|
type=OpenAI,
|
|
path='gpt-4-1106-preview',
|
|
key='', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
|
|
meta_template=api_meta_template,
|
|
query_per_second=1,
|
|
max_out_len=1024,
|
|
max_seq_len=4096,
|
|
batch_size=2,
|
|
retry=20,
|
|
temperature=0,
|
|
)]
|
|
|
|
## ------------- Evaluation Configuration
|
|
eval = dict(
|
|
partitioner=dict(
|
|
type=SubjectiveSizePartitioner,
|
|
strategy='split',
|
|
max_task_size=10000,
|
|
mode='m2n',
|
|
infer_order='double',
|
|
base_models=[gpt4],
|
|
compare_models=models,
|
|
judge_models=judge_models,
|
|
),
|
|
runner=dict(type=LocalRunner, max_num_workers=2, task=dict(type=SubjectiveEvalTask)),
|
|
given_pred = [{'abbr':'gpt4-turbo', 'path':''}]
|
|
)
|
|
|
|
work_dir = 'outputs/compass_arena_debug/'
|
|
|
|
summarizer = dict(type=CompassArenaSummarizer, summary_type='half_add')
|