OpenCompass/configs/eval_subjective_compassarena.py
2024-05-28 23:09:59 +08:00

107 lines
3.3 KiB
Python

from os import getenv as gv
from opencompass.models import HuggingFaceCausalLM
from mmengine.config import read_base
with read_base():
from .datasets.subjective.compassarena.compassarena_compare import subjective_datasets
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
from opencompass.partitioners import NaivePartitioner, SizePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
from opencompass.runners import LocalRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import CompassArenaSummarizer
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
],
reserved_roles=[dict(role='SYSTEM', api_role='SYSTEM')],
)
# -------------Inference Stage ----------------------------------------
# For subjective evaluation, we often set do sample for models
models = [
dict(
type=HuggingFaceChatGLM3,
abbr='chatglm3-6b-hf',
path='THUDM/chatglm3-6b',
tokenizer_path='THUDM/chatglm3-6b',
model_kwargs=dict(
device_map='auto',
trust_remote_code=True,
),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
trust_remote_code=True,
),
generation_kwargs=dict(
do_sample=True,
),
meta_template=api_meta_template,
max_out_len=2048,
max_seq_len=4096,
batch_size=1,
run_cfg=dict(num_gpus=1, num_procs=1),
)
]
datasets = [*subjective_datasets]
gpt4 = dict(
abbr='gpt4-turbo',
type=OpenAI,
path='gpt-4-1106-preview',
key='', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
meta_template=api_meta_template,
query_per_second=1,
max_out_len=2048,
max_seq_len=4096,
batch_size=4,
retry=20,
temperature=1,
) # Re-inference gpt4's predictions or you can choose to use the pre-commited gpt4's predictions
# -------------Evalation Stage ----------------------------------------
## ------------- JudgeLLM Configuration
judge_models = [dict(
abbr='GPT4-Turbo',
type=OpenAI,
path='gpt-4-1106-preview',
key='', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
meta_template=api_meta_template,
query_per_second=1,
max_out_len=1024,
max_seq_len=4096,
batch_size=2,
retry=20,
temperature=0,
)]
## ------------- Evaluation Configuration
eval = dict(
partitioner=dict(
type=SubjectiveSizePartitioner,
strategy='split',
max_task_size=10000,
mode='m2n',
infer_order='double',
base_models=[gpt4],
compare_models=models,
judge_models=judge_models,
),
runner=dict(type=LocalRunner, max_num_workers=2, task=dict(type=SubjectiveEvalTask)),
given_pred = [{'abbr':'gpt4-turbo', 'path':''}]
)
work_dir = 'outputs/compass_arena_debug/'
summarizer = dict(type=CompassArenaSummarizer, summary_type='half_add')