mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
105 lines
3.0 KiB
Python
105 lines
3.0 KiB
Python
from opencompass.models import HuggingFaceCausalLM
|
|
from copy import deepcopy
|
|
from opencompass.models import TurboMindModel
|
|
from mmengine.config import read_base
|
|
|
|
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
|
|
from opencompass.partitioners import NaivePartitioner, SizePartitioner
|
|
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
|
|
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
|
|
from opencompass.runners import LocalRunner
|
|
from opencompass.runners import SlurmSequentialRunner
|
|
from opencompass.tasks import OpenICLInferTask
|
|
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
|
|
from opencompass.summarizers import ArenaHardSummarizer
|
|
|
|
with read_base():
|
|
from .datasets.subjective.arena_hard.arena_hard_compare import subjective_datasets
|
|
|
|
api_meta_template = dict(
|
|
round=[
|
|
dict(role='HUMAN', api_role='HUMAN'),
|
|
dict(role='BOT', api_role='BOT', generate=True),
|
|
]
|
|
)
|
|
|
|
_meta_template = dict(
|
|
round=[
|
|
dict(role='HUMAN', begin='<|begin_of_text|>user<|end_header_id|>\n\n', end='<|eot_id|>'),
|
|
dict(role='BOT', begin='<|begin_of_text|>assistant<|end_header_id|>\n\n', end='<|eot_id|>', generate=True),
|
|
],
|
|
)
|
|
|
|
models = [
|
|
dict(
|
|
type=HuggingFaceCausalLM,
|
|
abbr='llama-3-8b-instruct-hf',
|
|
path='meta-llama/Meta-Llama-3-8B-Instruct',
|
|
model_kwargs=dict(device_map='auto'),
|
|
tokenizer_kwargs=dict(
|
|
padding_side='left',
|
|
truncation_side='left',
|
|
use_fast=False,
|
|
),
|
|
meta_template=_meta_template,
|
|
max_out_len=4096,
|
|
max_seq_len=2048,
|
|
batch_size=8,
|
|
run_cfg=dict(num_gpus=1, num_procs=1),
|
|
generation_kwargs={'eos_token_id': [128001, 128009]},
|
|
batch_padding=True,
|
|
)
|
|
]
|
|
|
|
datasets = [*subjective_datasets]
|
|
|
|
work_dir = 'outputs/arena_hard/'
|
|
# -------------Inferen Stage ----------------------------------------
|
|
|
|
|
|
infer = dict(
|
|
partitioner=dict(type=SizePartitioner, max_task_size=1000000),
|
|
runner=dict(
|
|
type=LocalRunner,
|
|
max_num_workers=32,
|
|
task=dict(type=OpenICLInferTask)),
|
|
)
|
|
|
|
judge_models = [dict(
|
|
abbr='GPT4-Turbo',
|
|
type=OpenAI,
|
|
path='gpt-4-1106-preview',
|
|
key='',
|
|
meta_template=api_meta_template,
|
|
query_per_second=1,
|
|
max_out_len=4096,
|
|
max_seq_len=8192,
|
|
batch_size=10,
|
|
retry=10,
|
|
temperature = 0,
|
|
)]
|
|
|
|
## ------------- Evaluation Configuration
|
|
gpt4_0314 = dict(
|
|
abbr='gpt4-0314',
|
|
type=OpenAI,
|
|
)
|
|
|
|
eval = dict(
|
|
partitioner=dict(
|
|
type=SubjectiveSizePartitioner,
|
|
max_task_size=1000000,
|
|
mode='m2n',
|
|
infer_order='double',
|
|
base_models=[gpt4_0314],
|
|
compare_models=models,
|
|
judge_models=judge_models,
|
|
),
|
|
runner=dict(type=LocalRunner, max_num_workers=16, task=dict(type=SubjectiveEvalTask)),
|
|
given_pred = [{'abbr':'gpt4-0314', 'path':''}]
|
|
)
|
|
|
|
summarizer = dict(
|
|
type=ArenaHardSummarizer
|
|
)
|