OpenCompass/opencompass/tasks/openicl_eval.py
Songyang Zhang aa2b89b6f8
[Update] Add CascadeEvaluator with Data Replica (#2022)
* Update CascadeEvaluator

* Update CascadeEvaluator

* Update CascadeEvaluator

* Update Config

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update
2025-05-20 16:46:55 +08:00

466 lines
18 KiB
Python

import argparse
import copy
import math
import os
import os.path as osp
import random
import statistics
import sys
import time
from inspect import signature
from typing import List
import mmengine
from mmengine.config import Config, ConfigDict
from mmengine.utils import mkdir_or_exist
from opencompass.registry import (ICL_EVALUATORS, MODELS, TASKS,
TEXT_POSTPROCESSORS)
from opencompass.tasks.base import BaseTask, extract_role_pred
from opencompass.utils import (build_dataset_from_cfg, get_infer_output_path,
get_logger)
@TASKS.register_module()
class OpenICLEvalTask(BaseTask):
"""OpenICL Evaluation Task.
This task is used to evaluate the metric between predictions and
references.
"""
name_prefix = 'OpenICLEval'
log_subdir = 'logs/eval'
output_subdir = 'results'
def __init__(self, cfg: ConfigDict):
super().__init__(cfg)
self.logger = get_logger()
self.num_gpus = max(
max(
c.get('eval_cfg', {}).get('num_gpus', 0),
c.get('eval_cfg', {}).get('evaluator', {}).get(
'judge_cfg', {}).get('run_cfg', {}).get('num_gpus', 0),
) for c in sum(self.dataset_cfgs, []))
self.num_procs = max(
c.get('eval_cfg', {}).get('evaluator', {}).get(
'judge_cfg', {}).get('run_cfg', {}).get('num_procs', 1)
for c in sum(self.dataset_cfgs, []))
self.dump_details = (cfg.get('eval', {}).get('runner', {}).get(
'task', {}).get('dump_details', False))
self.cal_extract_rate = (cfg.get('eval', {}).get('runner', {}).get(
'task', {}).get('cal_extract_rate', False))
def get_command(self, cfg_path, template):
sys.path.append(os.getcwd())
script_path = __file__
if self.num_gpus > 1:
port = random.randint(12000, 32000)
command = (f'torchrun --master_port={port} '
f'--nproc_per_node {self.num_procs} '
f'{script_path} {cfg_path}')
else:
python = sys.executable
command = f'{python} {script_path} {cfg_path}'
return template.format(task_cmd=command)
def run(self):
for model_cfg, dataset_cfgs in zip(self.model_cfgs, self.dataset_cfgs):
for dataset_cfg in dataset_cfgs:
self.model_cfg = model_cfg
self.dataset_cfg = dataset_cfg
# Load Dataset
self.eval_cfg = copy.deepcopy(dataset_cfg.get('eval_cfg'))
self.output_column = copy.deepcopy(
dataset_cfg['reader_cfg']['output_column'])
out_path = get_infer_output_path(
self.model_cfg,
self.dataset_cfg,
osp.join(self.work_dir, 'results'),
)
if osp.exists(out_path):
continue
self._score()
def _score(self):
# Load and preprocess test data
test_set = self._load_and_preprocess_test_data()
# Load predictions
pred_dicts, pred_strs = self._load_predictions()
# Process predictions
pred_strs = self._process_predictions(pred_strs)
# Evaluate predictions
result = self._evaluate_predictions(
pred_strs,
test_set,
pred_dicts,
)
# Save results
self._save_results(result)
def _load_and_preprocess_test_data(self):
"""Load test dataset and apply postprocessing if needed."""
test_set = build_dataset_from_cfg(self.dataset_cfg).test
# Postprocess dataset if necessary
if 'dataset_postprocessor' in self.eval_cfg:
proc = self.eval_cfg['dataset_postprocessor']['type']
if isinstance(proc, str):
proc = TEXT_POSTPROCESSORS.get(proc)
def postprocess(sample):
s = sample[self.output_column]
sample[self.output_column] = proc(s)
return sample
test_set = test_set.map(postprocess)
return test_set
def _load_predictions(self):
"""Load model predictions from files."""
filename = get_infer_output_path(
self.model_cfg,
self.dataset_cfg,
osp.join(self.work_dir, 'predictions'),
)
# in case the prediction is partial
root, ext = osp.splitext(filename)
partial_filename = root + '_0' + ext
if not osp.exists(osp.realpath(filename)) and not osp.exists(
osp.realpath(partial_filename)):
raise FileNotFoundError(
f'Prediction files not found: neither {filename} '
f'nor {partial_filename} exists')
if osp.exists(osp.realpath(filename)):
preds = mmengine.load(filename)
preds = [preds[str(i)] for i in range(len(preds))]
else:
filename = partial_filename
preds = []
i = 1
while osp.exists(osp.realpath(filename)):
try:
sub_preds = mmengine.load(filename)
preds.extend(
[sub_preds[str(i)] for i in range(len(sub_preds))])
filename = root + f'_{i}' + ext
i += 1
except Exception as e:
self.logger.error(
f'Error loading prediction file {filename}: {e}')
break
pred_dicts = copy.deepcopy(preds)
preds = {k: [pred.get(k) for pred in preds] for k in preds[0]}
pred_strs = preds.pop('prediction', None)
return pred_dicts, pred_strs
def _process_predictions(self, pred_strs):
"""Apply various processing steps to predictions."""
# Check if we're dealing with a list of lists (pred_list_flag)
pred_list_flag = pred_strs is not None and isinstance(
pred_strs[0], list)
# Extract role predictions if needed
if ('pred_role' in self.eval_cfg and 'meta_template' in self.model_cfg
and not MODELS.get(self.model_cfg['type']).is_api):
# Create a prompt template for role config parsing
from opencompass.models.base import LMTemplateParser
parser = LMTemplateParser(self.model_cfg['meta_template'])
role = parser.roles[self.eval_cfg['pred_role']]
if pred_list_flag:
pred_strs = [[
extract_role_pred(
_pred,
role.get('begin', None),
role.get('end', None),
) for _pred in pred
] for pred in pred_strs]
else:
pred_strs = [
extract_role_pred(
pred,
role.get('begin', None),
role.get('end', None),
) for pred in pred_strs
]
# Apply postprocessors if configured
# Postprocess predictions if necessary
# Model Specified Postprocessor
if 'pred_postprocessor' in self.model_cfg:
kwargs = copy.deepcopy(self.model_cfg['pred_postprocessor'])
proc = kwargs.pop('type')
if isinstance(proc, str):
proc = TEXT_POSTPROCESSORS.get(proc)
if pred_list_flag:
pred_strs = [[proc(s, **kwargs) for s in preds]
for preds in pred_strs]
else:
pred_strs = [proc(s, **kwargs) for s in pred_strs]
# Dataset Specified Postprocessor
if 'pred_postprocessor' in self.eval_cfg:
kwargs = copy.deepcopy(self.eval_cfg['pred_postprocessor'])
proc = kwargs.pop('type')
if isinstance(proc, str):
proc = TEXT_POSTPROCESSORS.get(proc)
if pred_list_flag:
pred_strs = [[proc(s, **kwargs) for s in preds]
for preds in pred_strs]
else:
pred_strs = [proc(s, **kwargs) for s in pred_strs]
return pred_strs
def _evaluate_predictions(
self,
pred_strs,
test_set,
pred_dicts,
):
"""Evaluate predictions using the configured evaluator."""
# Get references from test set
references = (None if self.output_column is None else
[sample[self.output_column] for sample in test_set])
# Build evaluator from config
evaluator_cfg = self.eval_cfg.get('evaluator', {})
evaluator_type = evaluator_cfg.get('type')
if isinstance(evaluator_type, str):
evaluator_type = ICL_EVALUATORS.get(evaluator_type)
# Prepare evaluator inputs
evaluator_cfg_copy = copy.deepcopy(evaluator_cfg)
evaluator_cfg_copy.pop('type', None)
# Initialize evaluator with appropriate parameters
sig = signature(evaluator_type)
if 'predictions' in sig.parameters and 'references' in sig.parameters:
evaluator = evaluator_type(
predictions=pred_strs,
references=references,
**evaluator_cfg_copy,
)
else:
evaluator = evaluator_type(**evaluator_cfg_copy)
# Set output directory for the evaluator
out_path = get_infer_output_path(
self.model_cfg,
self.dataset_cfg,
osp.join(self.work_dir, 'results'),
)
evaluator._out_dir = osp.splitext(out_path)[0] # strip extension
# If preds contains keys that match the score method
# parameters, include them
if pred_dicts:
preds = {
k: [pred.get(k) for pred in pred_dicts]
for k in pred_dicts[0]
}
# Add predictions and references if they're expected
# by the score method
preds['predictions'] = pred_strs
preds['references'] = (test_set[self.output_column]
if self.output_column else None)
preds['test_set'] = test_set
if 'origin_prompt' not in preds:
try:
preds['origin_prompt'] = [None for _ in range(len(pred_strs))]
except TypeError:
preds['origin_prompt'] = None
preds = {k: preds[k] for k in signature(evaluator.score).parameters}
# Call evaluate with the appropriate parameters
k = self.dataset_cfg.get('k', 1)
n = self.dataset_cfg.get('n', 1)
result = evaluator.evaluate(k, n, copy.deepcopy(test_set), **preds)
# Format details if needed
if self.dump_details:
# Get detailed results if available
details = result.get('details', None)
if details is None:
self.logger.info(
'Details is not give by evaluator, try to format it')
try:
result['details'] = self.format_details(
pred_strs,
references,
details,
pred_dicts,
)
# Calculate extraction rate if needed
if self.cal_extract_rate and details is not None:
result['extract_rate'] = self.extract_rate(result)
# Calculate BPB if applicable
if pred_dicts and 'BPB' in pred_dicts[0].get(
list(pred_dicts[0].keys())[0], {}):
correct_bpb, incorrect_bpb = self.calculate_bpb(
pred_dicts)
result['correct_bpb'] = correct_bpb
result['incorrect_bpb'] = incorrect_bpb
except Exception as e:
self.logger.warning(f'Skip dumping details due to: {e}.')
else:
result.pop('details', None)
return result
def _save_results(self, result):
"""Save evaluation results to file."""
out_path = get_infer_output_path(
self.model_cfg,
self.dataset_cfg,
osp.join(self.work_dir, 'results'),
)
mkdir_or_exist(osp.split(out_path)[0])
mmengine.dump(result, out_path, ensure_ascii=False, indent=4)
def extract_rate(self, results):
"""This function is designed for calculating the extraction rate.
Args:
results (dict): The result dict, include the information
"""
details = results['details']
details_list = list(details.values())
invalid_extractions = []
for item in details_list:
try:
invalid_extractions.extend(
[item] if not item['predictions'] else [])
except KeyError as e:
self.logger.warning(f'Skip {e} due to: {item}')
raise KeyError
success_rate = 100 - len(invalid_extractions) / len(details) * 100
return success_rate
def format_details(
self,
predictions,
references,
details,
pred_dicts,
):
"""This function is responsible for formatting prediction details.
Args:
predictions (list): The prediction list.
references (list): The reference list.
details (list): Contains the 'pred' 'answer' and 'correct' for each
sample. Such as `[{'pred': '光荣和ωforce',
'answers': ['光荣和ω-force', '光荣和ωforce'], 'correct': True}]`
pred_dicts (list): Contains a list of samples with the original
prompts. Such as
`[{'origin_prompt': '根据文章回答问题。你的答案应该尽可能3》…………',
'prediction': ' 光荣和ω-force\n', 'gold': ['光荣和ω-force']}]`
Returns:
list: The formatted prediction details.
"""
results = {}
for i in range(len(predictions)):
ppl_flag = False
result = {}
origin_prediction = copy.deepcopy(pred_dicts[i])
origin_prediction.pop('in-context examples', None)
origin_prediction.pop('prediction', None)
keys = copy.deepcopy(list(origin_prediction.keys()))
for key in keys:
if key.startswith('label:'):
ppl_flag = True
origin_prediction[key].pop('testing input', None)
new_key = key.replace('label: ', '')
origin_prediction[new_key] = origin_prediction.pop(key)
if ppl_flag:
results['type'] = 'PPL'
result['origin_prediction'] = origin_prediction
result['predictions'] = str(predictions[i])
result['references'] = str(references[i])
result['correct'] = str(predictions[i]) == str(references[i])
elif details is not None:
results['type'] = 'GEN'
result['prompt'] = origin_prediction['origin_prompt']
result['origin_prediction'] = pred_dicts[i]['prediction']
result['predictions'] = details[i]['pred']
result['references'] = details[i]['answer']
result['correct'] = details[i]['correct']
else:
results['type'] = 'GEN'
result['prompt'] = origin_prediction['origin_prompt']
result['origin_prediction'] = pred_dicts[i]['prediction']
result['predictions'] = str(predictions[i])
result['references'] = str(references[i])
results[str(i)] = result
return results
def calculate_bpb(self, pred_dicts: List):
"""This function is used to calculate the BPB (Bits Per Byte) for the
data. The correct BPB is obtained directly from the values in the
'predictions' file. The incorrect BPB is the average of the remaining
BPB values for each sample under different labels after subtracting the
correct BPB. The calculation of BPB (Bits Per Byte) is similar to PPL,
with the difference that it computes the additional bits needed on
average, in terms of character length, to encode the true sequence
based on the predictions. This calculation involves applying a
weighting factor based on the ratio of words to characters.
Args:
pred_dicts (list): Contains a list of samples with each options
and BPB scores.
Returns:
dict: Contains correct and incorrect bpb.
"""
incorrect_bpb_list = []
bpb_list = []
for pred_dict in pred_dicts:
preds = {
key: value
for key, value in pred_dict.items()
if key.startswith('label: ')
}
values = []
for item in preds.items():
values.append(item[1])
bpbs = [value['BPB'] for value in values]
incorrect_bpb_list.append(
(sum(bpbs) - min(bpbs)) / (len(bpbs) - 1))
bpb_list.append(min(bpbs))
def filters(origins):
targets = [target for target in origins if not math.isnan(target)]
return targets
mean_incorrect = statistics.mean(filters(incorrect_bpb_list))
mean_correct = statistics.mean(filters(bpb_list))
return 100 * mean_correct, 100 * mean_incorrect
def parse_args():
parser = argparse.ArgumentParser(description='Score Calculator')
parser.add_argument('config', help='Config file path')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
cfg = Config.fromfile(args.config)
start_time = time.time()
inferencer = OpenICLEvalTask(cfg)
inferencer.run()
end_time = time.time()
get_logger().info(f'time elapsed: {end_time - start_time:.2f}s')