OpenCompass/opencompass/summarizers/subjective/wildbench.py
bittersweet1999 c2bcd8725e
[Fix] Fix wildbench (#1508)
* fix pip version

* fix pip version

* fix_wildbench
2024-09-10 17:35:07 +08:00

300 lines
13 KiB
Python

# flake8: noqa
# yapf: disable
import csv
import os
import os.path as osp
import re
from collections import defaultdict
from datetime import datetime
from itertools import product
import numpy as np
from mmengine import ConfigDict
from tabulate import tabulate
from opencompass.partitioners.sub_naive import remove_duplicate_pairs
from opencompass.utils import dataset_abbr_from_cfg, model_abbr_from_cfg
from .compass_arena import (CompassArenaSummarizer, check_position_bias,
model_abbr_from_cfg_used_in_summarizer)
from .utils import get_judgeanswer_and_reference, get_outdir
task_group_new = {
'Information seeking': 'Information/Advice seeking',
'Creative Writing': 'Creative Tasks',
'Coding & Debugging': 'Coding & Debugging',
'Reasoning': 'Planning & Reasoning',
'Editing': 'Creative Tasks',
'Math': 'Math & Data Analysis',
'Planning': 'Planning & Reasoning',
'Brainstorming': 'Creative Tasks',
'Role playing': 'Creative Tasks',
'Advice seeking': 'Information/Advice seeking',
'Data Analysis': 'Math & Data Analysis',
'Others': 'Creative Tasks'}
def post_process_wildbench_pair(judgement: str):
pattern = r'\"choice\": \"(.*?)\"'
matched_result = re.findall(pattern, judgement)
if matched_result:
return matched_result[0]
else:
return None
def post_process_wildbench_single(judgement: str):
pattern = r'\"score\": \"(.*?)\"'
matched_result = re.findall(pattern, judgement)
try:
score = float(matched_result[0])
return {'score': score}
except (ValueError, IndexError) as e:
return None
# if matched_result:
# score = float(matched_result[0])
# else:
# return None
# return {'score': score}
def get_capability_results(
judged_answers,
references,
fout,
fout_flag,
model_abbr,
):
capability_ratings = defaultdict(float)
capability_counts = defaultdict(float)
for ans, ref in zip(judged_answers, references):
# rescale
capability_ratings['total'] += ans
capability_counts['total'] += 1
tags = [ref['primary_tag']] + ref['secondary_tag']
for tag in tags:
capability_ratings[task_group_new[tag]] += ans
capability_counts[task_group_new[tag]] += 1
capability_avg_ratings = defaultdict(float)
for capability, total_score in capability_ratings.items():
s = (total_score / capability_counts[capability] - 5) * 2 * 10
s = round(s, 2)
capability_avg_ratings[capability] = s
columns = list(capability_avg_ratings.keys())
columns.insert(0, columns.pop(columns.index('total')))
with open(fout, 'a+', newline='') as csvfile:
writer = csv.writer(csvfile)
if fout_flag == 0:
writer.writerow(['model'] + columns)
writer.writerow([model_abbr] + [capability_avg_ratings[column] for column in columns])
class WildBenchSingleSummarizer(CompassArenaSummarizer):
"""Do the subjectivity analyze based on evaluation results.
Args:
config (ConfigDict): The configuration object of the evaluation task.
It's expected to be filled out at runtime.
"""
def __init__(self, config: ConfigDict) -> None:
self.judge_type = 'single'
self.tasks = []
self.cfg = config
self.eval_model_cfgs = self.cfg['eval']['partitioner']['models']
self.judge_abbr = model_abbr_from_cfg(self.cfg['judge_models'][0])
self.judge_function = post_process_wildbench_single
def summarize(self, time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S')):
"""Summarize the subjectivity analysis based on evaluation results.
Args:
time_str (str): Timestamp for file naming.
Returns:
pd.DataFrame: The summary results.
"""
# self.judge_type == 'single'
dataset_cfgs = self.cfg['datasets']
output_dir, results_folder = get_outdir(self.cfg, time_str)
fout_flag = 0
for eval_model_cfg in self.eval_model_cfgs:
eval_model_abbr = model_abbr_from_cfg(eval_model_cfg)
show_model_abbr = model_abbr_from_cfg_used_in_summarizer(eval_model_cfg)
subdir_path = os.path.join(results_folder, eval_model_abbr + '_judged-by--' + self.judge_abbr)
if os.path.isdir(subdir_path):
fout = osp.join(output_dir, 'judged-by--' + self.judge_abbr + '-capability.csv')
overall_judged_answers, overall_references = [], []
for dataset in dataset_cfgs:
judged_answers, references = get_judgeanswer_and_reference(dataset, subdir_path, self.judge_function)
judged_answers = [item['score'] for item in judged_answers]
overall_judged_answers += judged_answers
overall_references += references
get_capability_results(overall_judged_answers, overall_references, fout, fout_flag, show_model_abbr)
fout_flag += 1
else:
print(subdir_path + ' is not exist! please check!')
class WildBenchPairSummarizer(CompassArenaSummarizer):
"""Do the subjectivity analyze based on evaluation results.
Args:
config (ConfigDict): The configuration object of the evaluation task.
It's expected to be filled out at runtime.
"""
def __init__(self, config: ConfigDict, check_pos_bias=False) -> None:
self.tasks = []
self.cfg = config
self.base_models = self.cfg['datasets'][0]['base_models']
self.compare_models = self.cfg['eval']['partitioner']['models']
self.judge_models = self.cfg.get('judge_models', None)
self.meta_judge_model = self.cfg.eval.partitioner.get('meta_judge_model', None)
self.judge_abbr = model_abbr_from_cfg(self.cfg['judge_models'][0])
self.judge_function = post_process_wildbench_pair
self.check_pos_bias = check_pos_bias
def get_score(self, time_str):
output_dir, results_folder = get_outdir(self.cfg, time_str)
model_combinations = list(product(self.base_models, self.compare_models))
unique_combinations = remove_duplicate_pairs([combo for combo in model_combinations if combo[0] != combo[1]])
if self.meta_judge_model is not None:
self.judge_models.append(self.meta_judge_model)
scores = {}
for idx, judge_model_cfg in enumerate(self.judge_models):
judge_model = model_abbr_from_cfg(judge_model_cfg)
for dataset in self.cfg['datasets']:
dataset_abbr = dataset_abbr_from_cfg(dataset)
for model_pair in unique_combinations:
base_model = model_pair[0]['abbr']
compare_model = model_pair[1]['abbr']
if idx == len(self.judge_models):
subdir = base_model + '_' + compare_model + '_summarized-by--' + judge_model
else:
subdir = base_model + '_' + compare_model + '_judged-by--' + judge_model
subdir_path = os.path.join(results_folder, subdir)
if not os.path.isdir(subdir_path):
print(subdir_path + ' is not exist! please check!')
continue
judged_answers, references = get_judgeanswer_and_reference(dataset, subdir_path, self.judge_function)
if self.check_pos_bias:
bias_num = check_position_bias(judged_answers, references)
else:
bias_num = 0
win_base_model = defaultdict(float)
win_compare_model = defaultdict(float)
categories = defaultdict(float)
# base_model = references[0]['answer1']
# compare_model = references[0]['answer2']
score_mapping = {'A++': 1, 'A+': 0.5, 'A=B': 0, 'B+': -0.5, 'B++': -1}
for prediction, reference in zip(judged_answers, references):
if prediction not in score_mapping:
continue
categories[dataset_abbr] += 1
flag = 1 if reference['answer1'] == base_model else -1
score_1 = score_mapping[prediction]*flag
score_2 = -score_1
tags = [reference['primary_tag']] + reference['secondary_tag']
for tag in tags:
win_base_model[task_group_new[tag]] += score_1
win_compare_model[task_group_new[tag]] += score_2
categories[task_group_new[tag]] += 1
win_compare_model[dataset_abbr] += score_2
win_base_model[dataset_abbr] += score_1
for capability in categories:
win_base_model[capability] = win_base_model[capability] / categories[capability] * 100
win_base_model[capability] = round(win_base_model[capability], 2)
win_compare_model[capability] = win_compare_model[capability] / categories[capability] * 100
win_compare_model[capability] = round(win_compare_model[capability], 2)
win_base_model['position_bias'] = bias_num
win_compare_model['position_bias'] = bias_num
if judge_model not in scores:
scores[judge_model] = {}
if dataset_abbr not in scores[judge_model]:
scores[judge_model][dataset_abbr] = {}
scores[judge_model][dataset_abbr][base_model + '/' + compare_model] = win_compare_model
return scores
def summarize(
self,
time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S'),
):
"""Summarize the subjectivity analysis based on evaluation results.
Args:
time_str (str): Timestamp for file naming.
Returns:
pd.DataFrame: The summary results.
"""
scores = self.get_score(time_str)
all_scores = {}
output_dir, results_folder = get_outdir(self.cfg, time_str)
for idx, judge_model in enumerate(self.judge_models):
score_by_judgemodel = {}
judge_abbr = model_abbr_from_cfg(judge_model)
for dataset in self.cfg['datasets']:
dataset_abbr = dataset_abbr_from_cfg(dataset)
summarizer_model_abbrs = [model_abbr_from_cfg_used_in_summarizer(i) for i in self.compare_models]
one_column = list(scores[judge_abbr][dataset_abbr].values())[0]
row_headers = [i for i in one_column.keys() if i not in [dataset_abbr, 'position_bias']]
row_headers = [dataset_abbr, 'position_bias'] + row_headers
table = []
for idx, row_header in enumerate(row_headers):
row = [row_header]
headers = ['']
for model_cfg in self.compare_models:
model_abbr = model_abbr_from_cfg(model_cfg)
avg = 0
for base_model_cfg in self.base_models:
base_model_abbr = model_abbr_from_cfg(base_model_cfg)
base_compare = base_model_abbr + '/' + model_abbr
headers.append(base_compare)
s = scores[judge_abbr][dataset_abbr][base_compare].get(row_header, '')
if isinstance(s, float):
avg += s
s = f'{s:.2f}'
if isinstance(s, int):
s = str(s)
row.append(s)
avg = avg/len(self.base_models)
if idx == 0:
score_by_judgemodel[model_abbr] = {'score': avg}
row.append(f'{avg:.2f}')
headers.append('Avg')
table.append(row)
txt = tabulate(table, headers=headers)
if idx == len(self.judge_models):
output_filename = osp.join(output_dir, 'summarized-by--' + judge_abbr + '-' + dataset_abbr + '-report.csv')
else:
output_filename = osp.join(output_dir, 'judged-by--' + judge_abbr + '-' + dataset_abbr + '-report.csv')
with open(output_filename, 'w') as f:
f.write(','.join(headers) + '\n')
for line in table:
f.write(','.join(line) + '\n')
all_scores[judge_abbr] = score_by_judgemodel
return {'Wildbench': all_scores}