OpenCompass/opencompass/summarizers/subjective/mtbench101.py
bittersweet1999 68ca48496b
[Refactor] Reorganize subjective eval (#1284)
* fix pip version

* fix pip version

* reorganize subjective eval

* reorg sub

* reorg subeval

* reorg subeval

* update subjective doc

* reorg subeval

* reorg subeval
2024-07-05 22:11:37 +08:00

148 lines
4.6 KiB
Python

# flake8: noqa: E501
import csv
import os
import os.path as osp
import re
from collections import defaultdict
from datetime import datetime
import numpy as np
from mmengine import ConfigDict
try:
from prettytable import from_csv
except ImportError:
from_csv = None
from opencompass.utils import model_abbr_from_cfg
from .compass_arena import CompassArenaSummarizer
from .utils import get_judgeanswer_and_reference, get_outdir
# from .utils.writer import Writer
def post_process_mtbench_pair(judgement: str):
"""Input a string like below:
xxx[[A]]xxx, and extract the judge
"""
pattern = r'\[([A-C]+)\]'
matched_result = re.findall(pattern, judgement)
if matched_result:
return matched_result[0]
else:
return None
def post_process_mtbench101(judgement: str):
"""Input a string like below:
xxx[[5]]xxx, and extract the score
"""
match = re.search(r'\[([0-9]+)\]', judgement)
if match:
score = int(match.group(1))
else:
return None
return {'score': score, 'judgement': judgement}
def get_final_results(judged_answers, references, output_dir, fout_flag, model,
judgemodel):
task_multi_id_scores = defaultdict(list)
task_scores = defaultdict(list)
for ans, ref in zip(judged_answers, references):
task = ref['task']
multi_id = ref['multi_id']
score = ans['score']
task_multi_id_scores[(task, multi_id)].append(score)
for (task, multi_id), scores in task_multi_id_scores.items():
min_score = min(scores)
task_scores[task].append(min_score)
final_task_scores = {
task: sum(scores) / len(scores) if scores else 0
for task, scores in task_scores.items()
}
average_score = round(
sum(final_task_scores.values()) / len(final_task_scores), 2)
fout = osp.join(output_dir,
'MTBench101-task_score-judged-by--' + judgemodel + '.csv')
columns = list(final_task_scores.keys())
with open(fout, 'a+', newline='') as csvfile:
writer = csv.writer(csvfile)
if fout_flag == 0:
writer.writerow(['model', 'average'] + columns)
writer.writerow([model, average_score] +
[final_task_scores[column] for column in columns])
return average_score
class MTBench101Summarizer(CompassArenaSummarizer):
"""Do the subjectivity analyze based on evaluation results.
Args:
config (ConfigDict): The configuration object of the evaluation task.
It's expected to be filled out at runtime.
"""
def __init__(self, config: ConfigDict, judge_type='single') -> None:
self.tasks = []
self.cfg = config
self.eval_model_cfgs = self.cfg['eval']['partitioner']['models']
self.eval_model_abbrs = [
model_abbr_from_cfg(model) for model in self.eval_model_cfgs
]
self.judge_models = self.cfg.get('judge_models', None)
self.judge_abbr = model_abbr_from_cfg(self.cfg['judge_models'][0])
self.judge_function = post_process_mtbench101
def summarize(self,
time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S')):
"""Summarize the subjectivity analysis based on evaluation results.
Args:
time_str (str): Timestamp for file naming.
Returns:
pd.DataFrame: The summary results.
"""
dataset = self.cfg['datasets'][0] # MTBench101 has just one subfile
output_dir, results_folder = get_outdir(self.cfg, time_str)
all_scores = {}
for judge_model in self.judge_models:
fout_flag = 0
score_by_judgemodel = {}
judge_abbr = model_abbr_from_cfg(judge_model)
for eval_model_abbr in self.eval_model_abbrs:
subdir = eval_model_abbr + '_judged-by--' + judge_abbr
subdir_path = os.path.join(results_folder, subdir)
if os.path.isdir(subdir_path):
judged_answers, references = get_judgeanswer_and_reference(
dataset, subdir_path, self.judge_function)
model_average_score = get_final_results(
judged_answers, references, output_dir, fout_flag,
eval_model_abbr, judge_abbr)
fout_flag += 1
score_by_judgemodel[eval_model_abbr] = {
'average': model_average_score
}
else:
print(subdir_path + ' is not exist! please check!')
all_scores[judge_abbr] = score_by_judgemodel
return {'MTBench101': all_scores}