mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* fix pip version * fix pip version * add internal followbench * add internal followbench * fix lint * fix lint
150 lines
5.2 KiB
Python
150 lines
5.2 KiB
Python
# flake8: noqa: E501
|
|
import csv
|
|
import os
|
|
import os.path as osp
|
|
import re
|
|
import statistics
|
|
from collections import defaultdict
|
|
from datetime import datetime
|
|
|
|
import numpy as np
|
|
from mmengine import ConfigDict
|
|
|
|
try:
|
|
from prettytable import from_csv
|
|
except ImportError:
|
|
from_csv = None
|
|
|
|
from opencompass.utils import model_abbr_from_cfg
|
|
|
|
from .subjective_post_process import post_process_autoj, post_process_judgelm
|
|
from .utils import get_judgeanswer_and_reference_update, get_outdir
|
|
|
|
|
|
def post_process_followbench(item):
|
|
generation, level = item['prediction'], item['gold']['level']
|
|
try:
|
|
satisfy = generation.strip('```').strip().split('\n')[-1]
|
|
|
|
if level == 1:
|
|
if 'YES' in satisfy:
|
|
return 1, 1
|
|
elif 'NO' in satisfy:
|
|
return 0, 0
|
|
else:
|
|
raise Exception('Invalid evaluation for level 1.')
|
|
else:
|
|
satisfy_list = re.search(r'\[.*\]', satisfy)
|
|
if satisfy_list:
|
|
satisfy_list = eval(satisfy_list.group())
|
|
if len(satisfy_list) == level:
|
|
num_true = 0
|
|
for i in satisfy_list:
|
|
if i == 'YES' or i == 'True':
|
|
num_true += 1
|
|
elif i in [
|
|
'NO', 'False', 'PARTIAL', 'MAYBE', 'UNKNOWN',
|
|
'N/A'
|
|
]:
|
|
num_true += 0
|
|
else:
|
|
raise Exception('Invalid element in the list.')
|
|
return int(num_true == level), num_true / level
|
|
else:
|
|
raise Exception('Invalid number of elements in the list.')
|
|
else:
|
|
raise Exception('Invalid list that cannot be parsed.')
|
|
|
|
except Exception as e:
|
|
return -1, -1
|
|
|
|
|
|
def get_scores(judged_answers, references):
|
|
results = [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]
|
|
n_group = len(judged_answers) // 5
|
|
n_groups = [n_group] * 5
|
|
|
|
for judged_answer, reference in zip(judged_answers, references):
|
|
if judged_answer[0] == -1:
|
|
n_groups[reference['level'] - 1] -= 1
|
|
else:
|
|
results[0][reference['level'] - 1] += judged_answer[0]
|
|
results[1][reference['level'] - 1] += judged_answer[1]
|
|
|
|
for i in range(len(results)):
|
|
for j in range(len(results[i])):
|
|
if n_groups[j] != 0:
|
|
results[i][j] = results[i][j] / n_groups[j]
|
|
else:
|
|
results[i][j] = 0
|
|
temp_dict = {
|
|
'HSR_AVG': statistics.mean(results[0]),
|
|
'SSR_AVG': statistics.mean(results[1])
|
|
}
|
|
for idx, s in enumerate(results[0]):
|
|
temp_dict[f'HSR_L{idx+1}'] = s
|
|
for idx, s in enumerate(results[1]):
|
|
temp_dict[f'SSR_L{idx+1}'] = s
|
|
|
|
return temp_dict
|
|
|
|
|
|
class FollowBenchSummarizer:
|
|
"""Do the subjectivity analyze based on evaluation results.
|
|
|
|
Args:
|
|
config (ConfigDict): The configuration object of the evaluation task.
|
|
It's expected to be filled out at runtime.
|
|
"""
|
|
|
|
def __init__(self, config: ConfigDict) -> None:
|
|
self.tasks = []
|
|
self.cfg = config
|
|
self.eval_model_cfgs = self.cfg['eval']['partitioner']['models']
|
|
self.eval_model_abbrs = [
|
|
model_abbr_from_cfg(model) for model in self.eval_model_cfgs
|
|
]
|
|
self.judge_models = self.cfg.get('judge_models', None)
|
|
|
|
self.judge_function = post_process_followbench
|
|
|
|
def summarize(self,
|
|
time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S')):
|
|
"""Summarize the subjectivity analysis based on evaluation results.
|
|
|
|
Args:
|
|
time_str (str): Timestamp for file naming.
|
|
|
|
Returns:
|
|
pd.DataFrame: The summary results.
|
|
"""
|
|
all_scores = {}
|
|
for judge_model in self.judge_models:
|
|
score_by_judgemodel = {}
|
|
judge_abbr = model_abbr_from_cfg(judge_model)
|
|
dataset_cfgs = self.cfg['datasets']
|
|
dataset = dataset_cfgs[0] # Alignbench just have only one subfile
|
|
output_dir, results_folder = get_outdir(self.cfg, time_str)
|
|
|
|
fout = osp.join(output_dir,
|
|
'followbench-judged-by--' + judge_abbr + '.csv')
|
|
|
|
for eval_model_abbr in self.eval_model_abbrs:
|
|
subdir = eval_model_abbr + '_judged-by--' + judge_abbr
|
|
subdir_path = os.path.join(results_folder, subdir)
|
|
model = eval_model_abbr
|
|
if os.path.isdir(subdir_path):
|
|
judged_answers, references = get_judgeanswer_and_reference_update(
|
|
dataset, subdir_path, self.judge_function)
|
|
if len(judged_answers) == 0:
|
|
score_by_judgemodel[model] = None
|
|
continue
|
|
scores = get_scores(judged_answers, references)
|
|
score_by_judgemodel[model] = scores
|
|
else:
|
|
score_by_judgemodel[model] = None
|
|
print(subdir_path + ' is not exist! please check!')
|
|
|
|
all_scores[judge_abbr] = score_by_judgemodel
|
|
return {'followbench': all_scores}
|