OpenCompass/opencompass/models/openai_api.py
Songyang Zhang aa2b89b6f8
[Update] Add CascadeEvaluator with Data Replica (#2022)
* Update CascadeEvaluator

* Update CascadeEvaluator

* Update CascadeEvaluator

* Update Config

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update
2025-05-20 16:46:55 +08:00

767 lines
30 KiB
Python

import json
import os
import random
import re
import time
from concurrent.futures import ThreadPoolExecutor
from threading import Lock
from typing import Dict, List, Optional, Union
import httpx
import jieba
import requests
from tqdm import tqdm
from opencompass.registry import MODELS
from opencompass.utils.prompt import PromptList
from .base_api import BaseAPIModel
PromptType = Union[PromptList, str]
OPENAI_API_BASE = os.path.join(
os.environ.get('OPENAI_BASE_URL', 'https://api.openai.com/v1/'),
'chat/completions',
)
OPENAISDK_API_BASE = os.environ.get('OPENAI_BASE_URL',
'https://api.openai.com/v1/')
O1_MODEL_LIST = ['o1', 'o3', 'o4']
@MODELS.register_module()
class OpenAI(BaseAPIModel):
"""Model wrapper around OpenAI's models.
Args:
path (str): The name of OpenAI's model.
max_seq_len (int): The maximum allowed sequence length of a model.
Note that the length of prompt + generated tokens shall not exceed
this value. Defaults to 2048.
query_per_second (int): The maximum queries allowed per second
between two consecutive calls of the API. Defaults to 1.
retry (int): Number of retires if the API call fails. Defaults to 2.
key (str or List[str]): OpenAI key(s). In particular, when it
is set to "ENV", the key will be fetched from the environment
variable $OPENAI_API_KEY, as how openai defaults to be. If it's a
list, the keys will be used in round-robin manner. Defaults to
'ENV'.
org (str or List[str], optional): OpenAI organization(s). If not
specified, OpenAI uses the default organization bound to each API
key. If specified, the orgs will be posted with each request in
round-robin manner. Defaults to None.
meta_template (Dict, optional): The model's meta prompt
template if needed, in case the requirement of injecting or
wrapping of any meta instructions.
openai_api_base (str): The base url of OpenAI's API. Defaults to
'https://api.openai.com/v1/chat/completions'.
openai_proxy_url (str, optional): An optional proxy url to use when
connecting to OpenAI's API. When set to 'ENV', the url will be
fetched from the environment variable $OPENAI_PROXY_URL.
Defaults to None.
mode (str, optional): The method of input truncation when input length
exceeds max_seq_len. 'front','mid' and 'rear' represents the part
of input to truncate. Defaults to 'none'.
temperature (float, optional): What sampling temperature to use.
If not None, will override the temperature in the `generate()`
call. Defaults to None.
tokenizer_path (str, optional): The path to the tokenizer. Use path if
'tokenizer_path' is None, otherwise use the 'tokenizer_path'.
Defaults to None.
extra_body (Dict, optional): Add additional JSON properties to
the request
think_tag (str, optional): The tag to use for reasoning content.
Defaults to '</think>'.
"""
is_api: bool = True
def __init__(
self,
path: str = 'gpt-3.5-turbo',
max_seq_len: int = 16384,
query_per_second: int = 1,
rpm_verbose: bool = False,
retry: int = 2,
key: Union[str, List[str]] = 'ENV',
org: Optional[Union[str, List[str]]] = None,
meta_template: Optional[Dict] = None,
openai_api_base: str = OPENAI_API_BASE,
openai_proxy_url: Optional[str] = None,
mode: str = 'none',
logprobs: Optional[bool] = False,
top_logprobs: Optional[int] = None,
temperature: Optional[float] = None,
tokenizer_path: Optional[str] = None,
extra_body: Optional[Dict] = None,
verbose: bool = False,
think_tag: str = '</think>',
):
super().__init__(
path=path,
max_seq_len=max_seq_len,
meta_template=meta_template,
query_per_second=query_per_second,
rpm_verbose=rpm_verbose,
retry=retry,
verbose=verbose,
)
import tiktoken
self.tiktoken = tiktoken
self.temperature = temperature
assert mode in ['none', 'front', 'mid', 'rear']
self.mode = mode
self.logprobs = logprobs
self.top_logprobs = top_logprobs
self.tokenizer_path = tokenizer_path
self.hf_tokenizer = None
self.extra_body = extra_body
self.think_tag = think_tag
if isinstance(key, str):
if key == 'ENV':
if 'OPENAI_API_KEY' not in os.environ:
raise ValueError('OpenAI API key is not set.')
self.keys = os.getenv('OPENAI_API_KEY').split(',')
else:
self.keys = [key]
else:
self.keys = key
# record invalid keys and skip them when requesting API
# - keys have insufficient_quota
self.invalid_keys = set()
self.key_ctr = 0
if isinstance(org, str):
self.orgs = [org]
else:
self.orgs = org
self.org_ctr = 0
self.url = openai_api_base
if openai_proxy_url == 'ENV':
if 'OPENAI_PROXY_URL' not in os.environ:
raise ValueError('OPENAI_PROXY_URL is not set.')
self.proxy_url = os.getenv('OPENAI_PROXY_URL')
else:
self.proxy_url = openai_proxy_url
self.path = path
def generate(
self,
inputs: List[PromptType],
max_out_len: int = 512,
temperature: float = 0.7,
**kwargs,
) -> List[str]:
"""Generate results given a list of inputs.
Args:
inputs (List[PromptType]): A list of strings or PromptDicts.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
temperature (float): What sampling temperature to use,
between 0 and 2. Higher values like 0.8 will make the output
more random, while lower values like 0.2 will make it more
focused and deterministic. Defaults to 0.7.
Returns:
List[str]: A list of generated strings.
"""
if self.temperature is not None:
temperature = self.temperature
with ThreadPoolExecutor() as executor:
results = list(
tqdm(
executor.map(
self._generate,
inputs,
[max_out_len] * len(inputs),
[temperature] * len(inputs),
),
total=len(inputs),
desc='Inferencing',
))
return results
def _generate(self, input: PromptType, max_out_len: int,
temperature: float) -> str:
"""Generate results given a list of inputs.
Args:
inputs (PromptType): A string or PromptDict.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
temperature (float): What sampling temperature to use,
between 0 and 2. Higher values like 0.8 will make the output
more random, while lower values like 0.2 will make it more
focused and deterministic.
Returns:
str: The generated string.
"""
assert isinstance(input, (str, PromptList))
messages, max_out_len = self._preprocess_messages(
input, max_out_len, self.max_seq_len, self.mode,
self.get_token_len)
max_num_retries = 0
while max_num_retries < self.retry:
self.wait()
with Lock():
if len(self.invalid_keys) == len(self.keys):
raise RuntimeError('All keys have insufficient quota.')
# find the next valid key
while True:
self.key_ctr += 1
if self.key_ctr == len(self.keys):
self.key_ctr = 0
if self.keys[self.key_ctr] not in self.invalid_keys:
break
key = self.keys[self.key_ctr]
header = {
'Authorization': f'Bearer {key}',
'content-type': 'application/json',
'api-key': key,
}
if self.orgs:
with Lock():
self.org_ctr += 1
if self.org_ctr == len(self.orgs):
self.org_ctr = 0
header['OpenAI-Organization'] = self.orgs[self.org_ctr]
try:
if any(model in self.path for model in O1_MODEL_LIST):
self.logger.warning(
f"'max_token' is unsupported for model {self.path}")
self.logger.warning(
f'We use max_out_len: {max_out_len} for this query')
data = dict(
model=self.path,
messages=messages,
max_completion_tokens=max_out_len,
n=1,
logprobs=self.logprobs,
top_logprobs=self.top_logprobs,
stop=None,
temperature=temperature,
)
else:
data = dict(
model=self.path,
messages=messages,
max_tokens=max_out_len,
n=1,
logprobs=self.logprobs,
top_logprobs=self.top_logprobs,
stop=None,
temperature=temperature,
)
if self.extra_body:
data.update(self.extra_body)
if isinstance(self.url, list):
import random
url = self.url[random.randint(0, len(self.url) - 1)]
else:
url = self.url
if self.proxy_url is None:
raw_response = requests.post(url,
headers=header,
data=json.dumps(data))
else:
proxies = {
'http': self.proxy_url,
'https': self.proxy_url,
}
if self.verbose:
self.logger.debug(
f'Start send query to {self.proxy_url}')
raw_response = requests.post(
url,
headers=header,
data=json.dumps(data),
proxies=proxies,
)
if self.verbose:
self.logger.debug(
f'Get response from {self.proxy_url}')
except requests.ConnectionError:
self.logger.error('Got connection error, retrying...')
continue
try:
if raw_response.status_code != 200:
self.logger.error(f'Request failed with status code '
f'{raw_response.status_code}, response: '
f'{raw_response.content.decode()}')
continue
response = raw_response.json()
except requests.JSONDecodeError:
self.logger.error(f'JsonDecode error, got status code '
f'{raw_response.status_code}, response: '
f'{raw_response.content.decode()}')
continue
self.logger.debug(str(response))
try:
if self.logprobs:
return response['choices']
else:
# Extract content and reasoning_content from response
message = response['choices'][0]['message']
content = message.get('content', '') or ''
reasoning_content = message.get('reasoning_content',
'') or ''
# Handle reasoning_content similar to OpenAISDK
if reasoning_content:
if self.verbose:
self.logger.info(
'Extracting reasoning content and tags.'
'Reasoning Content: %s, \n'
'Tags: %s, \n'
'Content: %s', reasoning_content,
self.think_tag, content)
if content:
return reasoning_content + self.think_tag + content
else:
return reasoning_content
else:
return content.strip()
except KeyError:
if 'error' in response:
if response['error']['code'] == 'rate_limit_exceeded':
time.sleep(10)
self.logger.warn('Rate limit exceeded, retrying...')
continue
elif response['error']['code'] == 'insufficient_quota':
self.invalid_keys.add(key)
self.logger.warn(f'insufficient_quota key: {key}')
continue
elif response['error']['code'] == 'invalid_prompt':
self.logger.warn('Invalid prompt:', str(input))
return ''
elif response['error']['type'] == 'invalid_prompt':
self.logger.warn('Invalid prompt:', str(input))
return ''
self.logger.error(
'Find error message in response: ',
str(response['error']),
)
max_num_retries += 1
raise RuntimeError('Calling OpenAI failed after retrying for '
f'{max_num_retries} times. Check the logs for '
'details.')
def get_token_len(self, prompt: str) -> int:
"""Get lengths of the tokenized string. Only English and Chinese
characters are counted for now. Users are encouraged to override this
method if more accurate length is needed.
Args:
prompt (str): Input string.
Returns:
int: Length of the input tokens
"""
assert self.tokenizer_path or self.path
try:
if self.verbose:
self.logger.info(f'Used tokenizer_path: {self.tokenizer_path}')
tokenizer_path = (self.tokenizer_path
if self.tokenizer_path else self.path)
try:
if self.verbose:
self.logger.info(
f'Start load tiktoken encoding: {tokenizer_path}')
enc = self.tiktoken.encoding_for_model(tokenizer_path)
if self.verbose:
self.logger.info(
f'Successfully tiktoken encoding: {tokenizer_path}')
return len(enc.encode(prompt, disallowed_special=()))
except Exception as e:
self.logger.warn(f'{e}, tiktoken encoding cannot load '
f'{tokenizer_path}')
from transformers import AutoTokenizer
if self.hf_tokenizer is None:
if self.verbose:
self.logger.info(
f'Start load hf tokenizer: {tokenizer_path}')
self.hf_tokenizer = AutoTokenizer.from_pretrained(
tokenizer_path, trust_remote_code=True)
self.logger.info(
f'Successfully load HF Tokenizer from {tokenizer_path}'
)
return len(self.hf_tokenizer(prompt).input_ids)
except Exception:
self.logger.warn(
'Can not get tokenizer automatically, '
'will use default tokenizer gpt-4 for length calculation.')
default_tokenizer = 'gpt-4'
enc = self.tiktoken.encoding_for_model(default_tokenizer)
if self.verbose:
self.logger.info(
f'Successfully load default tiktoken tokenizer: '
f' {default_tokenizer}')
return len(enc.encode(prompt, disallowed_special=()))
def _bin_trim(self, prompt: str, num_token: int, mode: str) -> str:
"""Get a suffix of prompt which is no longer than num_token tokens.
Args:
prompt (str): Input string.
num_token (int): The upper bound of token numbers.
mode (str): The method of input truncation
('front', 'mid', or 'rear')
Returns:
str: The trimmed prompt.
"""
token_len = self.get_token_len(prompt)
if token_len <= num_token:
return prompt
pattern = re.compile(r'[\u4e00-\u9fa5]')
if pattern.search(prompt):
words = list(jieba.cut(prompt, cut_all=False))
sep = ''
else:
words = prompt.split(' ')
sep = ' '
l, r = 1, len(words)
while l + 2 < r:
mid = (l + r) // 2
if mode == 'front':
cur_prompt = sep.join(words[-mid:])
elif mode == 'mid':
cur_prompt = sep.join(words[:mid]) + sep.join(words[-mid:])
elif mode == 'rear':
cur_prompt = sep.join(words[:mid])
if self.get_token_len(cur_prompt) <= num_token:
l = mid # noqa: E741
else:
r = mid
if mode == 'front':
prompt = sep.join(words[-l:])
elif mode == 'mid':
prompt = sep.join(words[:l]) + sep.join(words[-l:])
elif mode == 'rear':
prompt = sep.join(words[:l])
return prompt
def _preprocess_messages(
self,
input: Union[str, PromptList],
max_out_len: int,
max_seq_len: int,
mode: str,
get_token_len_func,
) -> tuple[List[Dict], int]:
"""Preprocess input into messages format and calculate max output
length.
Args:
input: Input prompt as string or PromptList
max_out_len: Maximum output length
max_seq_len: Maximum sequence length
mode: The method of input truncation
get_token_len_func: Function to calculate token length
Returns:
tuple: (processed messages list, adjusted max_out_len)
"""
# Check input length when mode is 'none'
if mode == 'none':
input_len = (get_token_len_func(input) if isinstance(
input, str) else sum(
get_token_len_func(item['prompt']) for item in input))
if input_len > max_seq_len:
raise ValueError(
f'Input length ({input_len}) exceeds max_seq_len '
f'({max_seq_len}) and mode is set to "none". Please '
f'either change the mode or increase the max_seq_len.')
# Trim input if needed
def bin_trim_wrapper(text):
trim_length = max_seq_len - 100
if max_out_len is not None:
trim_length -= max_out_len
return self._bin_trim(text, trim_length, mode)
if isinstance(input, str) and mode != 'none':
input = bin_trim_wrapper(input)
# Convert input to messages format
if isinstance(input, str):
messages = [{'role': 'user', 'content': input}]
input_len = get_token_len_func(input)
else:
messages = []
processed_prompts = []
for item in input:
input_content = item['prompt']
if mode != 'none':
input_content = bin_trim_wrapper(input_content)
processed_prompts.append(input_content)
msg = {'content': input_content}
if item['role'] == 'HUMAN':
msg['role'] = 'user'
elif item['role'] == 'BOT':
msg['role'] = 'assistant'
elif item['role'] == 'SYSTEM':
msg['role'] = 'system'
messages.append(msg)
input_len = sum(
get_token_len_func(prompt) for prompt in processed_prompts)
# Adjust max_out_len
if max_out_len is not None:
original_max_out_len = max_out_len
max_out_len = min(max_out_len, max_seq_len - input_len - 100)
if max_out_len <= 0:
raise ValueError(
f'max_out_len ({max_out_len}) is less than or equal to 0. '
f'This may be due to input length ({input_len}) being too '
f'close to max_seq_len ({max_seq_len}). Please increase '
f'max_seq_len or use a truncation mode other than "none".')
if max_out_len < original_max_out_len:
self.logger.warning(
f'max_out_len was truncated from {original_max_out_len} '
f'to {max_out_len} due to input length')
return messages, max_out_len
class OpenAISDK(OpenAI):
def __init__(self,
path: str = 'gpt-3.5-turbo',
max_seq_len: int = 16384,
query_per_second: int = 1,
rpm_verbose: bool = False,
retry: int = 2,
key: str | List[str] = 'ENV',
org: str | List[str] | None = None,
meta_template: Dict | None = None,
openai_api_base: str | List[str] = OPENAISDK_API_BASE,
openai_proxy_url: Optional[str] = None,
mode: str = 'none',
logprobs: bool | None = False,
top_logprobs: int | None = None,
temperature: float | None = None,
tokenizer_path: str | None = None,
extra_body: Dict | None = None,
verbose: bool = False,
http_client_cfg: dict = {},
status_code_mappings: dict = {},
think_tag: str = '</think>'):
super().__init__(
path,
max_seq_len,
query_per_second,
rpm_verbose,
retry,
key,
org,
meta_template,
openai_api_base,
openai_proxy_url,
mode,
logprobs,
top_logprobs,
temperature,
tokenizer_path,
extra_body,
verbose=verbose,
)
from openai import OpenAI
# support multiple api_base for acceleration
if isinstance(openai_api_base, List):
self.openai_api_base = random.choice(openai_api_base)
else:
self.openai_api_base = openai_api_base
if self.proxy_url or http_client_cfg:
if self.proxy_url:
http_client_cfg['proxies'] = {
'http://': self.proxy_url,
'https://': self.proxy_url,
}
self.openai_client = OpenAI(
base_url=self.openai_api_base,
api_key=key,
http_client=httpx.Client(
**http_client_cfg) if http_client_cfg else None,
)
if self.verbose:
self.logger.info(f'Used openai_client: {self.openai_client}')
self.status_code_mappings = status_code_mappings
self.think_tag = think_tag
def _generate(
self,
input: PromptList | str,
max_out_len: int,
temperature: float,
timeout: int = 3600,
) -> str:
"""Generate results given a list of inputs.
Args:
input (PromptType): A string or PromptDict.
max_out_len (int): The maximum length of the output.
temperature (float): What sampling temperature to use.
timeout (int, optional): Timeout in seconds for the API call.
Defaults to 3600 (60 minutes).
Returns:
str: The generated string.
"""
from openai import APIStatusError, BadRequestError
assert isinstance(input, (str, PromptList))
messages, max_out_len = self._preprocess_messages(
input, max_out_len, self.max_seq_len, self.mode,
self.get_token_len)
num_retries = 0
while num_retries < self.retry:
self.wait()
if any(model in self.path for model in O1_MODEL_LIST):
self.logger.warning(
f"'max_token' is unsupported for model {self.path}")
self.logger.warning(
f'We use max_out_len: {max_out_len} for this query')
query_data = dict(
model=self.path,
max_completion_tokens=max_out_len,
n=1,
messages=messages,
extra_body=self.extra_body,
)
else:
query_data = dict(
model=self.path,
max_tokens=max_out_len,
n=1,
temperature=self.temperature,
messages=messages,
extra_body=self.extra_body,
)
try:
if self.verbose:
self.logger.info('Start calling OpenAI API')
responses = self.openai_client.chat.completions.create(
**query_data, timeout=timeout) # timeout in seconds
if self.verbose:
self.logger.info(
'Successfully get response from OpenAI API '
'with query: %s', query_data)
try:
self.logger.info(responses)
except Exception:
pass # noqa F841
# Check if response is empty or content is empty
if (not responses.choices or not responses.choices[0].message
or
(not responses.choices[0].message.content and not getattr(
responses.choices[0].message,
'reasoning_content',
'',
))): # noqa: E125
# There is case that server does not return any content
if responses.choices[0].finish_reason == 'stop':
self.logger.info(
'Server does not return any content '
'and stop reason is <stop>, '
'the input query is: %s', query_data)
return ''
self.logger.error(
'Failed to extract content from the responses. '
'Please check the API response for detail information.'
'API responses: %s',
responses,
)
num_retries += 1
continue
reasoning_content = (getattr(responses.choices[0].message,
'reasoning_content', '') or '')
content = responses.choices[0].message.content or ''
# Concat Reasoning Content and tags to content
if reasoning_content:
if self.verbose:
self.logger.info(
'Follow'
'vllm/reasoning/deepseek_r1_reasoning_parser'
'to parse the reasoning content and tags'
'Reasoning Content: %s, \n'
'Tags: %s, \n'
'Content: %s',
reasoning_content,
self.think_tag,
content,
)
if content:
return reasoning_content + self.think_tag + content
else:
return reasoning_content
else:
return content
except (BadRequestError, APIStatusError) as e:
# Handle BadRequest status
# You can specify self.status_code_mappings to bypass \
# API sensitivity blocks
# For example: status_code_mappings={400: 'Input data \
# may contain inappropriate content.'}
status_code = e.status_code
if (status_code is not None
and status_code in self.status_code_mappings):
error_message = self.status_code_mappings[status_code]
self.logger.error(
f'error occurs at {self.openai_api_base}')
self.logger.info(f'Status Code: {status_code}, \n'
f'Original Error Message: {e}, \n'
f'Return Message: {error_message} ')
return error_message
else:
self.logger.error(
f'error occurs at {self.openai_api_base}')
self.logger.error(e)
except Exception as e:
self.logger.error(f'error occurs at {self.openai_api_base}')
self.logger.error(e)
num_retries += 1
raise RuntimeError('Calling OpenAI API failed after retrying for '
f'{self.retry} times. Check the logs for details.')