mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
83 lines
2.4 KiB
Python
83 lines
2.4 KiB
Python
import re
|
||
from ..utils.rc_f1 import CJRCEvaluator
|
||
|
||
|
||
"""
|
||
given a target substring. find its all occurances in the string s
|
||
return the starting and ending index of every occurance
|
||
"""
|
||
|
||
|
||
def __find_substring_starts(s, target):
|
||
return [(m.start(), m.end()) for m in re.finditer(target, s)]
|
||
|
||
|
||
"""
|
||
compute the reading comprehension F1 scores
|
||
hyps and refs are lists of hyposisis and reference strings
|
||
"""
|
||
|
||
|
||
def compute_rc_f1(hyps, refs):
|
||
scores = 0
|
||
for h, r in zip(hyps, refs):
|
||
scores += CJRCEvaluator.compute_f1(r, h)
|
||
return {'score': scores / len(hyps)}
|
||
|
||
|
||
"""
|
||
compute the information extraction F1 scores
|
||
hyps and refs are lists of hyposisis and reference strings
|
||
entity_types: a set of all possible entity types
|
||
"""
|
||
|
||
|
||
def compute_ie_f1(hyps, refs, entity_types):
|
||
assert (len(hyps) == len(refs))
|
||
scores, abstentions = 0, 0
|
||
for h, r in zip(hyps, refs):
|
||
h = __extract_entities_pred(h, entity_types)
|
||
r = __extract_entities_ref(r)
|
||
if r == {}:
|
||
scores += 1 if h == {} else 0
|
||
continue
|
||
if h == {}:
|
||
abstentions += 1
|
||
intersected = [CJRCEvaluator.compute_f1(r[etype], einstance) for etype, einstance in h.items() if etype in r]
|
||
prec = sum(intersected) / len(h) if len(h) > 0 else 0
|
||
rec = sum(intersected) / len(r) if len(r) > 0 else 0
|
||
# print(prec, rec, intersected)
|
||
scores += 2 * prec * rec / (prec + rec + 1e-10)
|
||
return {'score': scores / len(hyps), "anstention_rate": abstentions / len(hyps)}
|
||
|
||
|
||
def __extract_entities_ref(ref):
|
||
outputs = {}
|
||
if ref.strip() == '':
|
||
return outputs
|
||
for seg in ref.split(';'):
|
||
seg = seg.split(':')
|
||
outputs[seg[0]] = seg[1]
|
||
return outputs
|
||
|
||
|
||
"""
|
||
extract entity type and instances from the model prediction
|
||
pred: string of model prediction
|
||
entity_types: a set of all possible entity types
|
||
"""
|
||
|
||
|
||
def __extract_entities_pred(pred, entity_types):
|
||
outputs = {}
|
||
for etype in entity_types:
|
||
occurances = __find_substring_starts(pred, etype)
|
||
for start, end in occurances:
|
||
if end >= (len(pred) - 2):
|
||
continue
|
||
if pred[end] == ":" or pred[end] == ":":
|
||
einstance = re.split("\n| ", pred[end + 1:].strip())[0].strip()
|
||
if einstance != '无' and einstance != '未提及':
|
||
outputs[etype] = einstance
|
||
return outputs
|