OpenCompass/opencompass/datasets/agieval/agieval.py
Xingjun.Wang edab1c07ba
[Feature] Support ModelScope datasets (#1289)
* add ceval, gsm8k modelscope surpport

* update race, mmlu, arc, cmmlu, commonsenseqa, humaneval and unittest

* update bbh, flores, obqa, siqa, storycloze, summedits, winogrande, xsum datasets

* format file

* format file

* update dataset format

* support ms_dataset

* udpate dataset for modelscope support

* merge myl_dev and update test_ms_dataset

* udpate dataset for modelscope support

* update readme

* update eval_api_zhipu_v2

* remove unused code

* add get_data_path function

* update readme

* remove tydiqa japanese subset

* add ceval, gsm8k modelscope surpport

* update race, mmlu, arc, cmmlu, commonsenseqa, humaneval and unittest

* update bbh, flores, obqa, siqa, storycloze, summedits, winogrande, xsum datasets

* format file

* format file

* update dataset format

* support ms_dataset

* udpate dataset for modelscope support

* merge myl_dev and update test_ms_dataset

* update readme

* udpate dataset for modelscope support

* update eval_api_zhipu_v2

* remove unused code

* add get_data_path function

* remove tydiqa japanese subset

* update util

* remove .DS_Store

* fix md format

* move util into package

* update docs/get_started.md

* restore eval_api_zhipu_v2.py, add environment setting

* Update dataset

* Update

* Update

* Update

* Update

---------

Co-authored-by: Yun lin <yunlin@U-Q9X2K4QV-1904.local>
Co-authored-by: Yunnglin <mao.looper@qq.com>
Co-authored-by: Yun lin <yunlin@laptop.local>
Co-authored-by: Yunnglin <maoyl@smail.nju.edu.cn>
Co-authored-by: zhangsongyang <zhangsongyang@pjlab.org.cn>
2024-07-29 13:48:32 +08:00

126 lines
4.5 KiB
Python

import json
import os.path as osp
from os import environ
from datasets import Dataset
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET
from opencompass.utils import get_data_path
from ..base import BaseDataset
from .math_equivalence import is_equiv
from .post_process import parse_math_answer
@LOAD_DATASET.register_module()
class AGIEvalDataset(BaseDataset):
@staticmethod
def load(path: str, name: str, setting_name: str):
path = get_data_path(path)
from .dataset_loader import load_dataset, load_dataset_as_result_schema
assert setting_name in 'zero-shot', 'only support zero-shot setting'
dataset_wo_label = load_dataset(name, setting_name, path)
dataset_with_label = load_dataset_as_result_schema(name, path)
dataset = []
for d1, d2 in zip(dataset_wo_label, dataset_with_label):
dataset.append({
'id': d2.index,
'problem_input': d1['context'],
'label': d2.label,
})
dataset = Dataset.from_list(dataset)
return dataset
@LOAD_DATASET.register_module()
class AGIEvalDataset_v2(BaseDataset):
@staticmethod
def load(path: str, name: str, setting_name: str):
path = get_data_path(path)
assert setting_name in 'zero-shot', 'only support zero-shot setting'
if environ.get('DATASET_SOURCE') == 'ModelScope':
from modelscope import MsDataset
ms_dataset = MsDataset.load(path, subset_name=name, split='test')
dataset = []
for item in ms_dataset:
passage = item['passage'] if item['passage'] else ''
question = passage + item['question']
options = '\n'.join(item['options']) if item['options'] else ''
if item['label']:
try:
label = eval(item['label'])
except Exception:
label = item['label']
if isinstance(label, list):
label = ''.join(label)
else:
label = item['answer']
d = {'question': question, 'options': options, 'label': label}
dataset.append(d)
dataset = Dataset.from_list(dataset)
else:
filename = osp.join(path, name + '.jsonl')
with open(filename, encoding='utf-8') as f:
data = [json.loads(line.strip()) for line in f]
dataset = []
for item in data:
passage = item['passage'] if item['passage'] else ''
question = passage + item['question']
options = '\n'.join(item['options']) if item['options'] else ''
if item['label']:
if isinstance(item['label'], list):
label = ''.join(item['label'])
else:
label = item['label']
else:
label = item['answer']
d = {'question': question, 'options': options, 'label': label}
dataset.append(d)
dataset = Dataset.from_list(dataset)
return dataset
@ICL_EVALUATORS.register_module()
class AGIEvalEvaluator(BaseEvaluator):
def score(self, predictions, references):
predictions = [parse_math_answer('', pred) for pred in predictions]
details = []
cnt = 0
for pred, ref in zip(predictions, references):
detail = {'pred': pred, 'answer': ref, 'correct': False}
if is_equiv(pred, ref):
cnt += 1
detail['correct'] = True
details.append(detail)
score = cnt / len(predictions) * 100
return {'score': score, 'details': details}
@ICL_EVALUATORS.register_module()
class AGIEvalEvaluator_mcq(BaseEvaluator):
def score(self, predictions, references):
if len(predictions) != len(references):
return {
'error': 'predictions and references have different '
'length'
}
details = []
cnt = 0
for pred, ref in zip(predictions, references):
detail = {'pred': pred, 'answer': ref, 'correct': False}
if pred == ref:
cnt += 1
detail['correct'] = True
details.append(detail)
score = cnt / len(predictions) * 100
return {'score': score, 'details': details}