OpenCompass/opencompass/datasets/MedXpertQA.py
Jin Ye b564e608b1
[Dataset] Add MedXpertQA (#2002)
* Add MedXpertQA

* Add MedXpertQA

* Add MedXpertQA

* Fix lint

---------

Co-authored-by: MaiziXiao <xxllcc1993@gmail.com>
2025-04-08 10:44:48 +08:00

226 lines
7.2 KiB
Python

import re
from datasets import Dataset, load_dataset
from opencompass.openicl import BaseEvaluator
from opencompass.registry import LOAD_DATASET, TEXT_POSTPROCESSORS
from opencompass.utils import get_logger
from .base import BaseDataset
def _parse(item, prompt_mode):
item['start'] = chr(65)
item['end'] = chr(65 + len(item.get('options', [])) - 1)
item['prompt_mode'] = prompt_mode
return item
@LOAD_DATASET.register_module()
class MedXpertQADataset(BaseDataset):
@staticmethod
def load(path: str, prompt_mode: str, **kwargs):
dataset = load_dataset(path, 'Text', split='test')
# dataset = load_dataset(path, 'Text', split='dev')
if prompt_mode == 'zero-shot':
dataset = dataset.map(lambda item: _parse(item, prompt_mode))
elif prompt_mode == 'few-shot':
pass # TODO: Implement few-shot prompt
return dataset
class MedXpertQAEvaluator(BaseEvaluator):
def score(self, predictions, references, test_set):
method = test_set['prompt_mode'][0]
if len(predictions) != len(references):
return {'error': 'preds and refrs have different length'}
correct = 0
count = 0
details = []
for idx, (i, j) in enumerate(zip(predictions, references)):
i = answer_cleansing(method, i, test_set['options'][idx],
test_set['label'][idx])
detail = {'pred': i, 'answer': j, 'correct': False}
count += 1
if i == j:
correct += 1
detail['correct'] = True
details.append(detail)
result = {'accuracy': 100 * correct / count, 'details': details}
return result
@TEXT_POSTPROCESSORS.register_module()
def answer_cleansing(
method: str,
prediction: str,
options: list,
label: str,
) -> str:
# Clean up unwanted phrases in the prediction
for unwanted_phrase in [
'I understand',
'A through J',
'A through E',
'A through D',
]:
prediction = prediction.replace(unwanted_phrase, '')
options_num = len(options)
options = [chr(65 + i) for i in range(options_num)]
options_str = r'\b(' + '|'.join(options) + r')\b'
prediction = re.findall(options_str, prediction)
if len(prediction) == 0:
prediction = []
else:
# If there is a "label" and its length is 1,
# process prediction accordingly
if len(label) == 1:
if method == 'few-shot':
answer_flag = True if len(prediction) > 1 else False
# choose the first or last element based on the answer_flag
if answer_flag:
prediction = [prediction[0]]
else:
prediction = [prediction[-1]]
elif method == 'zero-shot':
# choose the first element in list
prediction = [prediction[0]]
else:
raise ValueError('Method is not properly defined ...')
# Remove trailing period if it exists
if prediction[0] and prediction[0].endswith('.'):
prediction[0] = prediction[0][:-1]
return prediction[0]
def _generic_llmjudge_postprocess(judgement: str):
match = re.search(r'(A|B)', judgement)
grade_letter = (match.group(0) if match else 'B'
) # Default to "INCORRECT" if no match
return grade_letter
def MedXpertQA_llmjudge_postprocess(
output: dict,
output_path: str,
dataset: Dataset,
) -> dict:
# Get the original dataset
original_dataset = dataset.reader.dataset['test']
judged_answers = []
original_responses = []
references = []
details = []
# Initialize statistics dictionaries
stats = {'medical_task': {}, 'body_system': {}, 'question_type': {}}
total_correct = 0
total_count = 0
# Process each sample
for k, v in output.items():
idx = int(k) # Convert key to integer for indexing
original_responses.append(v['prediction'])
processed_judge = _generic_llmjudge_postprocess(v['prediction'])
# Get category information from the dataset
sample = original_dataset[idx]
medical_task = sample.get('medical_task', 'unknown')
body_system = sample.get('body_system', 'unknown')
question_type = sample.get('question_type', 'unknown')
# Initialize category stats if not exists
for level, key in [
('medical_task', medical_task),
('body_system', body_system),
('question_type', question_type),
]:
if key not in stats[level]:
stats[level][key] = {'correct': 0, 'total': 0}
# Record the judgment
if processed_judge is not None:
judged_answers.append(processed_judge)
try:
gold = v['gold']
references.append(gold)
except KeyError:
get_logger().warning(
f'No gold answer for {k}, use empty string as reference!')
gold = ''
references.append('')
# Check if the answer is correct (A means correct)
is_correct = processed_judge == 'A'
total_count += 1
if is_correct:
total_correct += 1
# Update category stats
for level, key in [
('medical_task', medical_task),
('body_system', body_system),
('question_type', question_type),
]:
stats[level][key]['correct'] += 1
# Update category totals
for level, key in [
('medical_task', medical_task),
('body_system', body_system),
('question_type', question_type),
]:
stats[level][key]['total'] += 1
# Add to details
details.append({
'id': k,
'question': sample['question'],
'options': sample['options'],
'origin_prompt': v['origin_prompt'],
'llm_judge': processed_judge,
'gold': gold,
'is_correct': is_correct,
'medical_task': medical_task,
'body_system': body_system,
'question_type': question_type,
})
# Calculate overall accuracy with two decimal places
overall_accuracy = (round(
(total_correct / total_count * 100), 2) if total_count > 0 else 0.00)
# Initialize results dictionary
results = {
'accuracy': overall_accuracy,
'total_correct': total_correct,
'total_count': total_count,
'details': details,
}
# Calculate accuracy for each category and flatten into results
for level in stats:
for key, value in stats[level].items():
if value['total'] > 0:
# Calculate accuracy with two decimal places
accuracy = round((value['correct'] / value['total'] * 100), 2)
# Create a flattened key for the category
flat_key = f'MedXpertQA-{key}'
# Add to results
results[flat_key] = accuracy
return results