mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* [Feature] Support import configs/models/summarizers from whl * Update LCBench configs * Update * Update * Update * Update * update * Update * Update * Update * Update * Update
51 lines
1.7 KiB
Python
51 lines
1.7 KiB
Python
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
|
from opencompass.openicl.icl_inferencer import SWCELossInferencer
|
|
from opencompass.openicl.icl_evaluator import BPCEvaluator
|
|
from opencompass.datasets import LLMCompressionDataset
|
|
|
|
|
|
# The three corpora for llm_compression used in the original paper
|
|
# See configs/datasets/llm_compression/README.md for more details
|
|
subset_mapping = {
|
|
'arxiv_math': ['arxiv_math'],
|
|
'commoncraw': ['cc'],
|
|
'python': ['python'],
|
|
}
|
|
|
|
|
|
# Build LLM Compression datasets
|
|
llm_compression_datasets = []
|
|
for _name in subset_mapping.keys():
|
|
llm_cmp_infer_cfg = dict(
|
|
prompt_template=dict(
|
|
type=PromptTemplate,
|
|
template='{content}',
|
|
),
|
|
# No in-context example, using ZeroRetriever
|
|
retriever=dict(type=ZeroRetriever),
|
|
# Calculates cross entropy loss for each batch based on a sliding context window
|
|
# Setting block_size=1900 and stride=512 according to the original paper
|
|
inferencer=dict(type=SWCELossInferencer, block_size=1900, stride=512),
|
|
)
|
|
|
|
# Calculates Bits per Character (BPC) based on the CE loss from the inference stage
|
|
llm_cmp_eval_cfg = dict(evaluator=dict(type=BPCEvaluator))
|
|
|
|
llm_compression_datasets.append(
|
|
dict(
|
|
abbr=f'llm_compression-{_name}',
|
|
type=LLMCompressionDataset,
|
|
path='./data/llm-compression',
|
|
name=_name,
|
|
samples=None, # Set small samples for testing
|
|
reader_cfg=dict(
|
|
input_columns=['content'],
|
|
output_column=None,
|
|
),
|
|
infer_cfg=llm_cmp_infer_cfg,
|
|
eval_cfg=llm_cmp_eval_cfg,
|
|
))
|
|
|
|
del _name
|