OpenCompass/opencompass/configs/datasets/anli/anli_ppl_1d290e.py
Songyang Zhang 46cc7894e1
[Feature] Support import configs/models/summarizers from whl (#1376)
* [Feature] Support import configs/models/summarizers from whl

* Update LCBench configs

* Update

* Update

* Update

* Update

* update

* Update

* Update

* Update

* Update

* Update
2024-08-01 00:42:48 +08:00

51 lines
1.8 KiB
Python

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import AnliDataset
anli_datasets = []
for _split in ['R1', 'R2', 'R3']:
anli_reader_cfg = dict(
input_columns=['context', 'hypothesis'],
output_column='label',
)
anli_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
'A':
dict(round=[
dict(role='HUMAN', prompt='{context}\n{hypothesis}\What is the relation between the two sentences?'),
dict(role='BOT', prompt='Contradiction'),
]),
'B':
dict(round=[
dict(role='HUMAN', prompt='{context}\n{hypothesis}\What is the relation between the two sentences?'),
dict(role='BOT', prompt='Entailment'),
]),
'C':
dict(round=[
dict(role='HUMAN', prompt='{context}\n{hypothesis}\What is the relation between the two sentences?'),
dict(role='BOT', prompt='Neutral'),
]),
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
anli_eval_cfg = dict(evaluator=dict(type=AccEvaluator), )
anli_datasets.append(
dict(
type=AnliDataset,
abbr=f'anli-{_split}',
path=f'data/anli/anli_v1.0/{_split}/dev.jsonl',
reader_cfg=anli_reader_cfg,
infer_cfg=anli_infer_cfg,
eval_cfg=anli_eval_cfg,
)
)