OpenCompass/configs/eval_subjective_functional_multiround.py
2024-05-14 15:35:58 +08:00

112 lines
3.1 KiB
Python

from opencompass.models import HuggingFaceCausalLM
from copy import deepcopy
from opencompass.models import TurboMindModel
from mmengine.config import read_base
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
from opencompass.partitioners import NaivePartitioner, SizePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
from opencompass.runners import LocalRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import MultiroundSummarizer
with read_base():
from .datasets.subjective.multiround.functionalmt_zh_judgeby_gpt4 import subjective_datasets
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
]
)
_meta_template = dict(
round=[
dict(role='HUMAN', begin='<|im_start|>user\n', end='<|im_end|>\n'),
dict(role='BOT', begin='<|im_start|>assistant\n', end='<|im_end|>\n', generate=True),
],
eos_token_id=151645,
)
models = [
dict(
type=HuggingFaceCausalLM,
abbr='qwen1.5-7b-chat-hf',
path='Qwen/Qwen1.5-7B-Chat',
model_kwargs=dict(
device_map='auto',
trust_remote_code=True
),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
trust_remote_code=True,
use_fast=False,
),
generation_kwargs=dict(
do_sample=True,
),
meta_template=_meta_template,
pad_token_id=151645,
max_out_len=100,
max_seq_len=2048,
batch_size=8,
run_cfg=dict(num_gpus=1, num_procs=1),
end_str='<|im_end|>',
)
]
datasets = [*subjective_datasets]
work_dir = 'outputs/multiround/'
# -------------Inferen Stage ----------------------------------------
infer = dict(
partitioner=dict(type=SizePartitioner, max_task_size=1000),
runner=dict(
type=SlurmSequentialRunner,
partition='your part',
quotatype='auto',
max_num_workers=256,
task=dict(type=OpenICLInferTask)),
)
judge_models = [dict(
abbr='GPT4-Turbo',
type=OpenAI,
path='gpt-4-1106-preview',
key='',
meta_template=api_meta_template,
query_per_second=1,
max_out_len=1024,
max_seq_len=4096,
batch_size=10,
retry=10,
temperature = 0,
)]
## ------------- Evaluation Configuration
eval = dict(
partitioner=dict(
type=SubjectiveSizePartitioner,
max_task_size=1000,
mode='singlescore',
models = models,
judge_models=judge_models
),
runner=dict(
type=SlurmSequentialRunner,
partition='your part',
quotatype='auto',
max_num_workers=256,
task=dict(type=SubjectiveEvalTask)),
)
summarizer = dict(
type=MultiroundSummarizer
)