mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* [Feat] Support multi-modal evaluation on MME benchmark. * [Fix] Remove debug code. * [Fix] Remove redundant codes and add type hints. * [Fix] Rename in config. * [Fix] Rebase main. * [Fix] Fix isort and yapf conflict.
188 lines
6.5 KiB
Python
188 lines
6.5 KiB
Python
from typing import List
|
|
|
|
from mmpretrain.structures import DataSample
|
|
|
|
|
|
class MiniGPT4MMBenchPromptConstructor:
|
|
"""Prompt constructor for MiniGPT-4 on MMBench.
|
|
|
|
Args:
|
|
image_prompt (str): Image prompt. Defaults to `''`.
|
|
reply_prompt (str): Reply prompt. Defaults to `''`.
|
|
"""
|
|
|
|
def __init__(self, image_prompt: str = '', reply_prompt: str = '') -> None:
|
|
self.image_prompt = image_prompt
|
|
self.reply_prompt = reply_prompt
|
|
|
|
def __call__(self, inputs: dict) -> dict:
|
|
"""Construct prompt.
|
|
|
|
Args:
|
|
inputs (dict): Input data containing image and data_samples.
|
|
|
|
Returns:
|
|
dict: A dict containing prompt, images and data_samples.
|
|
"""
|
|
data_samples = inputs['data_samples']
|
|
prompt = self._process(data_samples)
|
|
inputs.update({'prompt': prompt})
|
|
|
|
return inputs
|
|
|
|
def _process(self, data_samples: List[DataSample]) -> str:
|
|
"""Process data sample to prompt.
|
|
|
|
Args:
|
|
data_samples (List[DataSample]): A list of data_samples.
|
|
|
|
Returns:
|
|
str: Prompt.
|
|
"""
|
|
assert len(data_samples) == 1, 'Only support batch size 1.'
|
|
questions = [
|
|
data_sample.get('question') for data_sample in data_samples
|
|
]
|
|
options = [data_sample.get('options') for data_sample in data_samples]
|
|
contexts = [data_sample.get('context') for data_sample in data_samples]
|
|
question = questions[0]
|
|
option = options[0]
|
|
context = contexts[0]
|
|
if context is not None:
|
|
prompt = self.image_prompt + ' ' + context + ' ' + question + ' ' + option + ' ' + self.reply_prompt # noqa
|
|
else:
|
|
prompt = self.image_prompt + ' ' + question + ' ' + option + ' ' + self.reply_prompt # noqa
|
|
return prompt
|
|
|
|
|
|
class MiniGPT4COCOCaotionPromptConstructor(MiniGPT4MMBenchPromptConstructor):
|
|
"""Prompt constructor for MiniGPT-4 on COCO Caption."""
|
|
|
|
def _process(self, data_samples: List[DataSample]) -> str:
|
|
assert len(data_samples) == 1, 'Only support batch size 1.'
|
|
prompt = self.image_prompt + ' ' + 'a photo of' + self.reply_prompt
|
|
return prompt
|
|
|
|
|
|
class MiniGPT4ScienceQAPromptConstructor(MiniGPT4MMBenchPromptConstructor):
|
|
"""Prompt constructor for MiniGPT-4 on ScienceQA."""
|
|
|
|
choice_mapping = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F'}
|
|
|
|
def _process(self, data_samples: List[DataSample]) -> str:
|
|
assert len(data_samples) == 1, 'Only support batch size 1.'
|
|
questions = [
|
|
'Question: ' + data_sample.get('question') + '\n'
|
|
for data_sample in data_samples
|
|
] # noqa
|
|
choices = [data_sample.get('choices') for data_sample in data_samples]
|
|
choices = [[
|
|
f'({self.choice_mapping[i]}) ' + item
|
|
for i, item in enumerate(choice)
|
|
] for choice in choices]
|
|
choices = [
|
|
'Choices: ' + ' '.join(choice) + '\n' for choice in choices
|
|
] # noqa
|
|
contexts = [
|
|
'Context: ' + data_sample.get('hint') + '\n'
|
|
for data_sample in data_samples
|
|
] # noqa
|
|
question = questions[0]
|
|
choice = choices[0]
|
|
context = contexts[0]
|
|
prompt = self.image_prompt + ' ' + context + ' ' + question + ' ' + choice + self.reply_prompt + ' ' + 'The answer is' # noqa
|
|
return prompt
|
|
|
|
|
|
class MiniGPT4VQAPromptConstructor(MiniGPT4MMBenchPromptConstructor):
|
|
"""Prompt constructor for MiniGPT-4 on VQA."""
|
|
|
|
def _process(self, data_samples: List[DataSample]) -> str:
|
|
assert len(data_samples) == 1, 'Only support batch size 1.'
|
|
questions = [
|
|
data_sample.get('question') for data_sample in data_samples
|
|
]
|
|
question = questions[0]
|
|
prompt = self.image_prompt + ' ' + question + ' ' + 'Answer this question in a single word.' + ' ' + self.reply_prompt # noqa
|
|
return prompt
|
|
|
|
|
|
class MiniGPT4VSRPromptConstructor(MiniGPT4MMBenchPromptConstructor):
|
|
"""Prompt constructor for MiniGPT-4 on VSR."""
|
|
|
|
def _process(self, data_samples: List[DataSample]) -> str:
|
|
assert len(data_samples) == 1, 'Only support batch size 1.'
|
|
questions = [
|
|
data_sample.get('question') for data_sample in data_samples
|
|
]
|
|
question = questions[0]
|
|
prompt = self.image_prompt + ' ' + question + ' ' + 'Is the above description correct? Answer yes or no.' + ' ' + self.reply_prompt # noqa
|
|
return prompt
|
|
|
|
|
|
class MiniGPT4SEEDBenchPromptConstructor(MiniGPT4MMBenchPromptConstructor):
|
|
|
|
def _process(self, data_samples: List[DataSample]) -> str:
|
|
"""Process data sample to prompt.
|
|
|
|
Args:
|
|
data_samples (List[DataSample]): A list of data_samples.
|
|
|
|
Returns:
|
|
str: Prompt.
|
|
"""
|
|
assert len(data_samples) == 1, 'Only support batch size 1.'
|
|
questions = [
|
|
data_sample.get('question') for data_sample in data_samples
|
|
]
|
|
question = questions[0]
|
|
prompt = self.image_prompt + ' ' + question + ' ' + self.reply_prompt
|
|
return prompt
|
|
|
|
|
|
class MiniGPT4MMEPromptConstructor:
|
|
"""Prompt constructor for MiniGPT-4 on MME.
|
|
|
|
Args:
|
|
image_prompt (str): Image prompt. Defaults to `''`.
|
|
reply_prompt (str): Reply prompt. Defaults to `''`.
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
self.system_prompt = (
|
|
'Give the following image: <Img>ImageContent</Img>.'
|
|
'You will be able to see the image once I provide it to you.'
|
|
'Please answer my questions.')
|
|
self.sep = '###'
|
|
|
|
def __call__(self, inputs: dict) -> dict:
|
|
"""Construct prompt.
|
|
|
|
Args:
|
|
inputs (dict): Input data containing image and data_samples.
|
|
|
|
Returns:
|
|
dict: A dict containing prompt, images and data_samples.
|
|
"""
|
|
data_samples = inputs['data_samples']
|
|
prompt = self._process(data_samples)
|
|
inputs.update({'prompt': prompt})
|
|
|
|
return inputs
|
|
|
|
def _process(self, data_samples: List[DataSample]) -> str:
|
|
"""Process data sample to prompt.
|
|
|
|
Args:
|
|
data_samples (List[DataSample]): A list of data_samples.
|
|
|
|
Returns:
|
|
str: Prompt.
|
|
"""
|
|
assert len(data_samples) == 1, 'Only support batch size 1.'
|
|
question = data_samples[0].get('question')
|
|
prompt = self.system_prompt + self.sep
|
|
prompt += 'Human: ' + question + ' ' + '<Img><ImageHere></Img>' + ' ' + self.sep # noqa
|
|
prompt += 'Assistant: '
|
|
return prompt
|