mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* [Feat] Support multi-modal evaluation on MME benchmark. * [Fix] Remove debug code. * [Fix] Remove redundant codes and add type hints. * [Fix] Rename in config. * [Fix] Rebase main. * [Fix] Fix isort and yapf conflict.
93 lines
3.1 KiB
Python
93 lines
3.1 KiB
Python
from collections import defaultdict
|
|
from typing import Optional
|
|
|
|
from mmengine.evaluator import BaseMetric
|
|
|
|
from opencompass.registry import METRICS
|
|
|
|
|
|
@METRICS.register_module()
|
|
class MMEMetric(BaseMetric):
|
|
"""Dump model's prediction to a file.
|
|
|
|
Args:
|
|
collect_device (str): Device name used for collecting results from
|
|
different ranks during distributed training. Must be 'cpu' or
|
|
'gpu'. Defaults to 'cpu'.
|
|
prefix (str, optional): The prefix that will be added in the metric
|
|
names to disambiguate homonymous metrics of different evaluators.
|
|
If prefix is not provided in the argument, self.default_prefix
|
|
will be used instead. Default: None.
|
|
"""
|
|
|
|
task_dict = {
|
|
'Perception': [
|
|
'existence', 'count', 'position', 'color', 'posters', 'celebrity',
|
|
'scene', 'landmark', 'artwork', 'OCR'
|
|
],
|
|
'Cognition': [
|
|
'commonsense_reasoning', 'numerical_calculation',
|
|
'text_translation', 'code_reasoning'
|
|
]
|
|
} # noqa
|
|
|
|
def __init__(self,
|
|
collect_device: str = 'cpu',
|
|
prefix: Optional[str] = None) -> None:
|
|
super().__init__(collect_device, prefix)
|
|
|
|
def process(self, data_batch, data_samples) -> None:
|
|
for data_sample in data_samples:
|
|
result = dict()
|
|
result['img_path'] = data_sample['img_path']
|
|
result['task'] = data_sample['task']
|
|
result['pred'] = 1 if data_sample['answer'].lower(
|
|
) == data_sample['pred_answer'].lower() else 0
|
|
self.results.append(result)
|
|
|
|
def compute_metrics(self, results: list) -> dict:
|
|
|
|
# reorganize results
|
|
record = dict()
|
|
for task in (self.task_dict['Perception'] +
|
|
self.task_dict['Cognition']):
|
|
record[task] = defaultdict(int)
|
|
for sample in results:
|
|
record[sample['task']][sample['img_path']] += sample['pred']
|
|
|
|
# compute subtask score
|
|
metric = dict()
|
|
for task in (self.task_dict['Perception'] +
|
|
self.task_dict['Cognition']):
|
|
single_sum, double_sum = 0., 0.
|
|
for v in record[task].values():
|
|
assert 0 <= v <= 2
|
|
if v == 2:
|
|
single_sum += 2
|
|
double_sum += 1
|
|
elif v == 1:
|
|
single_sum += 1
|
|
acc = single_sum / 2 / len(record[task])
|
|
acc_plus = double_sum / len(record[task])
|
|
|
|
metric[task] = {
|
|
'acc': acc,
|
|
'acc_plus': acc_plus,
|
|
'score': 100 * (acc + acc_plus)
|
|
}
|
|
|
|
# compute overall score
|
|
score = 0
|
|
for task in self.task_dict['Perception']:
|
|
score += metric[task]['score']
|
|
metric['Perception'] = score
|
|
|
|
score = 0
|
|
for task in self.task_dict['Cognition']:
|
|
score += metric[task]['score']
|
|
metric['Cognition'] = score
|
|
|
|
metric['Overall'] = metric['Perception'] + metric['Cognition']
|
|
|
|
return metric
|