OpenCompass/configs/multimodal/minigpt_4/minigpt_4_7b_mme.py
Yike Yuan a6552224cb
[Feat] Support multi-modal evaluation on MME benchmark. (#197)
* [Feat] Support multi-modal evaluation on MME benchmark.

* [Fix] Remove debug code.

* [Fix] Remove redundant codes and add type hints.

* [Fix] Rename in config.

* [Fix] Rebase main.

* [Fix] Fix isort and yapf conflict.
2023-08-21 15:53:20 +08:00

44 lines
1.4 KiB
Python

from opencompass.multimodal.models.minigpt_4 import (MiniGPT4MMEPostProcessor, MiniGPT4MMEPromptConstructor)
# dataloader settings
val_pipeline = [
dict(type='mmpretrain.LoadImageFromFile'),
dict(type='mmpretrain.ToPIL', to_rgb=True),
dict(type='mmpretrain.torchvision/Resize',
size=(224, 224),
interpolation=3),
dict(type='mmpretrain.torchvision/ToTensor'),
dict(type='mmpretrain.torchvision/Normalize',
mean=(0.48145466, 0.4578275, 0.40821073),
std=(0.26862954, 0.26130258, 0.27577711)),
dict(type='mmpretrain.PackInputs',
algorithm_keys=[
'question', 'answer', 'task'
])
]
dataset = dict(type='opencompass.MMEDataset',
data_dir='/path/to/MME',
pipeline=val_pipeline)
minigpt_4_mme_dataloader = dict(batch_size=1,
num_workers=4,
dataset=dataset,
collate_fn=dict(type='pseudo_collate'),
sampler=dict(type='DefaultSampler', shuffle=False))
# model settings
minigpt_4_model = dict(
type='minigpt-4',
low_resource=False,
llama_model='/path/to/vicuna/',
prompt_constructor=dict(type=MiniGPT4MMEPromptConstructor),
post_processor=dict(type=MiniGPT4MMEPostProcessor))
# evaluation settings
minigpt_4_mme_evaluator = [
dict(type='opencompass.MMEMetric')
]
minigpt_4_load_from = '/path/to/prerained_minigpt4_7b.pth' # noqa