mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
150 lines
5.3 KiB
Python
150 lines
5.3 KiB
Python
import json
|
||
import re
|
||
|
||
from datasets import Dataset
|
||
|
||
from opencompass.openicl.icl_evaluator import BaseEvaluator
|
||
from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET
|
||
|
||
from .base import BaseDataset
|
||
|
||
|
||
@LOAD_DATASET.register_module()
|
||
class GaokaoBenchDataset(BaseDataset):
|
||
|
||
@staticmethod
|
||
def load(path: str):
|
||
with open(path, encoding='utf-8') as f:
|
||
data = json.load(f)
|
||
return Dataset.from_list(data['example'])
|
||
|
||
|
||
valid_gaokao_bench_question_types = [
|
||
'single_choice', 'multi_choice', 'multi_question_choice',
|
||
'five_out_of_seven', 'cloze', 'subjective', 'correction'
|
||
]
|
||
|
||
|
||
class GaokaoBenchEvaluator(BaseEvaluator):
|
||
|
||
def __init__(self, question_type) -> None:
|
||
super().__init__()
|
||
assert question_type in valid_gaokao_bench_question_types
|
||
self.question_type = question_type
|
||
|
||
def do_predictions_postprocess(self, model_output, answer_lenth=None):
|
||
if self.question_type == 'single_choice':
|
||
model_answer = []
|
||
temp = re.findall(r'[A-D]', model_output[::-1])
|
||
if len(temp) != 0:
|
||
model_answer.append(temp[0])
|
||
|
||
elif self.question_type == 'multi_question_choice':
|
||
model_answer = []
|
||
temp = re.findall(r'【答案】\s*[::]*\s*[A-Z]', model_output)
|
||
|
||
if len(temp) == answer_lenth:
|
||
for t in temp:
|
||
model_answer.append(re.findall(r'[A-Z]', t)[0])
|
||
else:
|
||
temp = re.findall(r'[A-Z]', model_output)
|
||
if len(temp) > 0:
|
||
for k in range(min(len(temp), answer_lenth)):
|
||
model_answer.append(temp[k])
|
||
|
||
elif self.question_type == 'multi_choice':
|
||
model_answer = []
|
||
answer = ''
|
||
content = re.sub(r'\s+', '', model_output)
|
||
answer_index = content.find('【答案】')
|
||
if answer_index > 0:
|
||
temp = content[answer_index:]
|
||
if len(re.findall(r'[A-D]', temp)) > 0:
|
||
for t in re.findall(r'[A-D]', temp):
|
||
answer += t
|
||
else:
|
||
temp = content[-10:]
|
||
if len(re.findall(r'[A-D]', temp)) > 0:
|
||
for t in re.findall(r'[A-D]', temp):
|
||
answer += t
|
||
if len(answer) != 0:
|
||
model_answer.append(answer)
|
||
|
||
elif self.question_type == 'five_out_of_seven':
|
||
model_answer = []
|
||
temp = re.findall(r'[A-G]', model_output)
|
||
if len(temp) > 0:
|
||
for k in range(min(5, len(temp))):
|
||
model_answer.append(temp[k])
|
||
|
||
return model_answer
|
||
|
||
def ensure_same_length(self, pred, refr):
|
||
if len(pred) == len(refr):
|
||
return pred
|
||
return ['Z'] * len(refr)
|
||
|
||
def score(self, predictions, references):
|
||
if self.question_type not in [
|
||
'single_choice', 'multi_choice', 'multi_question_choice',
|
||
'five_out_of_seven'
|
||
]:
|
||
return {'score': 0}
|
||
elif self.question_type == 'multi_choice':
|
||
details = {}
|
||
correct_score, total_score = 0, 0
|
||
for index, (pred, refr) in enumerate(zip(predictions, references)):
|
||
pred = self.do_predictions_postprocess(pred)
|
||
pred = self.ensure_same_length(pred, refr)
|
||
is_corrects = []
|
||
for p, r in zip(pred, refr):
|
||
if p == r:
|
||
correct_score += 2
|
||
is_corrects.append(True)
|
||
else:
|
||
for i in p:
|
||
if i not in r:
|
||
break
|
||
else:
|
||
correct_score += 1
|
||
is_corrects.append(False)
|
||
total_score += 2
|
||
details[str(index)] = {
|
||
'pred': pred,
|
||
'refr': refr,
|
||
'is_correct': all(is_corrects),
|
||
}
|
||
|
||
else:
|
||
details = {}
|
||
correct_score, total_score = 0, 0
|
||
for index, (pred, refr) in enumerate(zip(predictions, references)):
|
||
if self.question_type == 'multi_question_choice':
|
||
pred = self.do_predictions_postprocess(pred, len(refr))
|
||
else:
|
||
pred = self.do_predictions_postprocess(pred)
|
||
pred = self.ensure_same_length(pred, refr)
|
||
is_corrects = []
|
||
for p, r in zip(pred, refr):
|
||
is_correct = p == r
|
||
correct_score += is_correct
|
||
total_score += 1
|
||
is_corrects.append(is_correct)
|
||
details[str(index)] = {
|
||
'pred': pred,
|
||
'refr': refr,
|
||
'is_correct': all(is_corrects),
|
||
}
|
||
return {'score': correct_score / total_score * 100, 'details': details}
|
||
|
||
|
||
for question_type in valid_gaokao_bench_question_types:
|
||
# fix classic closure problem
|
||
def _gaokao_register(question_type):
|
||
ICL_EVALUATORS.register_module(
|
||
name='GaokaoBenchEvaluator' + '_' + question_type,
|
||
module=lambda *args, **kwargs: GaokaoBenchEvaluator(
|
||
question_type=question_type, *args, **kwargs))
|
||
|
||
_gaokao_register(question_type)
|