OpenCompass/opencompass/datasets/humaneval.py

174 lines
6.2 KiB
Python

# flake8: noqa: E501
# yapf: disable
import copy
import json
import os.path as osp
import re
import tempfile
from typing import List
from datasets import Dataset
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.registry import LOAD_DATASET
from .base import BaseDataset
HUMANEVAL_IMPORT_ERROR = '''\
Please install human_eval use following steps:
git clone git@github.com:open-compass/human-eval.git
cd human-eval && pip install -e .'''
HUMANEVAL_PLUS_IMPORT_ERROR = '''\
Please install evalplus use following steps:
git clone --recurse-submodules git@github.com:open-compass/human-eval.git
cd human-eval
pip install -e .
pip install -e evalplus'''
@LOAD_DATASET.register_module()
class HumanevalDataset(BaseDataset):
@staticmethod
def load(path: str, num_repeats: int = 1):
"""Load humaneval dataset for pass k mode.
Note that you can use num_repeats > 1 when your model does not support
`num_return_sequence` in generation, otherwise use the raw
humaneval dataset and set `num_return_sequence` in model config to
generate multiple responses for testing pass@k>1.
It better to change your dataset abbr correspondingly if you want to
change num_repeats>1, otherwise the number in
`.cache/dataset_size.json` might be inconsistent.
Args:
num_repeats(int): Number of repetition for this dataset to get
multiple responses in special cases.
"""
dataset = []
with open(path, 'r', encoding='utf-8') as f:
for line in f:
line = json.loads(line)
dataset.extend([copy.deepcopy(line) for _ in range(num_repeats)])
return Dataset.from_list(dataset)
class HumanEvalEvaluator(BaseEvaluator):
"""Evaluator for HumanEval or EvalPlus."""
def __init__(self, k: List[int] = [1, 10, 100]) -> None:
try:
import human_eval
except ImportError:
raise ImportError(HUMANEVAL_IMPORT_ERROR)
self.k = k
super().__init__()
def score(self, predictions, references, test_set):
if len(predictions) != len(references):
return {'error': 'preds and refrs have different length'}
from human_eval.data import HUMAN_EVAL, write_jsonl
from human_eval.evaluation import evaluate_functional_correctness
prompts = [item['prompt'] for item in test_set]
humaneval_preds = []
# create json file in human_eval format
for preds, refer in zip(predictions, references):
# suits for two case
# 1. use repeated dataset
# 2. use `num_return_sequences` to generate multiple responses
if not isinstance(preds, list):
preds = [preds]
for pred in preds:
humaneval_preds.append({'task_id': refer, 'completion': pred})
with tempfile.TemporaryDirectory() as tmp_dir:
out_dir = osp.join(tmp_dir, 'human_eval.json')
write_jsonl(out_dir, humaneval_preds)
score = evaluate_functional_correctness(out_dir, self.k, n_workers=4, timeout=3.0, problem_file=HUMAN_EVAL)
detail_path = osp.join(tmp_dir, 'human_eval.json_results.jsonl')
details = {}
with open(detail_path, 'r') as f:
for index, line in enumerate(f):
line = json.loads(line)
line['is_correct'] = line['passed']
line['prompt'] = prompts[index]
details[str(index)] = line
results = {f'humaneval_{k}': score[k] * 100 for k in score}
results['details'] = details
return results
class HumanEvalPlusEvaluator(BaseEvaluator):
"""Evaluator for HumanEval or EvalPlus."""
def __init__(self, k: List[int] = [1, 10, 100]) -> None:
try:
import evalplus
except ImportError:
raise ImportError(HUMANEVAL_PLUS_IMPORT_ERROR)
self.k = k
super().__init__()
def score(self, predictions, references, test_set):
if len(predictions) != len(references):
return {'error': 'preds and refrs have different length'}
from evalplus.data import write_jsonl
from evalplus.evaluate import evaluate
prompts = [item['prompt'] for item in test_set]
humaneval_preds = []
for preds, refer, prompt in zip(predictions, references, prompts):
if not isinstance(preds, list):
preds = [preds]
for pred in preds:
humaneval_preds.append({'task_id': refer, 'solution': prompt + pred})
with tempfile.TemporaryDirectory() as tmp_dir:
out_dir = osp.join(tmp_dir, 'human_eval.jsonl')
write_jsonl(out_dir, humaneval_preds)
flags = dict(
dataset='humaneval',
samples=out_dir,
base_only=None,
parallel=None,
i_just_wanna_run=None,
test_details=0.2,
min_time_limit=0.2,
gt_time_limit_factor=4.0,
mini=None,
)
score = evaluate(flags)
results_path = osp.join(tmp_dir, 'human_eval_eval_results.json')
with open(results_path, 'r') as f:
results = json.load(f)
details = {}
for index in range(len(predictions)):
r = results['eval'][references[index]]
details[str(index)] = {
'prompt': prompts[index],
'prediction': predictions[index],
'reference': references[index],
'base_result': r['base'][0][0],
'plus_result': r['plus'][0][0],
'is_correct': r['base'][0][0] == 'success' and r['plus'][0][0] == 'success',
}
if r['nfiles'] > 1:
details[str(index)]['warning'] = 'Multiple files in the solution. Details may be wrong.'
results = {f'humaneval_plus_{k}': score[k] * 100 for k in score}
results['details'] = details
return results
def humaneval_postprocess_v2(text: str) -> str:
blocks = re.findall(r'```\w*\n(.*?)```', text, re.DOTALL)
if len(blocks) >= 1:
text = blocks[0]
return text