OpenCompass/opencompass/datasets/matbench/matbench.py
JuchengHu a2093a81ef
[Dataset] Matbench (#2021)
* add support for matbench

* fix dataset path

* fix data load

* fix

* fix lint

---------

Co-authored-by: Jucheng Hu <jucheng.hu.20@ucl.ac.uk>
Co-authored-by: Myhs-phz <demarcia2014@126.com>
2025-04-21 15:50:47 +08:00

88 lines
3.0 KiB
Python

import json
import os
from datasets import Dataset
from sklearn.metrics import (accuracy_score, f1_score, precision_score,
recall_score)
from opencompass.datasets.matbench.post_process import (parse_float_answer,
parse_true_false_answer
)
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET
from opencompass.utils import get_data_path
from ..base import BaseDataset
@LOAD_DATASET.register_module()
class MatbenchDataset(BaseDataset):
@staticmethod
def load(path, task):
path = get_data_path(path)
path = os.path.join(path,
'matbench_base_fold_0_' + task + '_test.json')
dataset = []
with open(path, 'r', encoding='utf-8') as file:
data = json.load(file)
for item in data:
dataset.append({
'problem': item['problem'],
'answer': item['answer'],
})
dataset = Dataset.from_list(dataset)
return dataset
@ICL_EVALUATORS.register_module()
class MatbenchEvaluator_regression(BaseEvaluator):
def score(self, predictions, references):
mae_sum = 0
count = 0
details = []
for pred, ref in zip(predictions, references):
pred = parse_float_answer(pred)
detail = {'pred': pred, 'answer': ref, 'error': None}
count += 1
try:
error = abs(float(pred) - float(ref))
mae_sum += error
detail['error'] = error
except Exception as e:
detail['error'] = str(e)
details.append(detail)
mae = mae_sum / count if count > 0 else 0
result = {'mae': mae, 'details': details}
return result
@ICL_EVALUATORS.register_module()
class MatbenchEvaluator_classification(BaseEvaluator):
def score(self, predictions, references):
details = []
predictions_parsed = []
for pred, ref in zip(predictions, references):
pred = parse_true_false_answer(pred)
detail = {'pred': pred, 'answer': ref, 'correct': False}
if pred == ref:
detail['correct'] = True
details.append(detail)
predictions_parsed.append(pred)
accuracy = accuracy_score(references, predictions_parsed)
precision = precision_score(references,
predictions_parsed,
average='binary')
recall = recall_score(references, predictions_parsed, average='binary')
f1 = f1_score(references, predictions_parsed, average='binary')
return {
'accuracy': accuracy,
'precision': precision,
'recall': recall,
'f1_score': f1,
'details': details
}