mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
157 lines
5.6 KiB
Python
157 lines
5.6 KiB
Python
from typing import Dict, List, Optional
|
|
|
|
import numpy as np
|
|
|
|
from opencompass.models.base import BaseModel
|
|
from opencompass.utils import get_logger
|
|
|
|
try:
|
|
from vllm import LLM, SamplingParams
|
|
except ImportError:
|
|
LLM, SamplingParams = None, None
|
|
|
|
DEFAULT_MODEL_KWARGS = dict(trust_remote_code=True)
|
|
|
|
|
|
class VLLM(BaseModel):
|
|
"""Model Wrapper for VLLM."""
|
|
|
|
def __init__(
|
|
self,
|
|
path: str,
|
|
max_seq_len: int = 2048,
|
|
model_kwargs: dict = None,
|
|
generation_kwargs: dict = dict(),
|
|
meta_template: Optional[Dict] = None,
|
|
mode: str = 'none',
|
|
use_fastchat_template: bool = False,
|
|
stop_words: List[str] = [],
|
|
):
|
|
super().__init__(path=path,
|
|
max_seq_len=max_seq_len,
|
|
meta_template=meta_template)
|
|
|
|
assert LLM, ('Please install VLLM with `pip install vllm`. '
|
|
'note: torch==2.1.2 is required.')
|
|
self.logger = get_logger()
|
|
self._load_model(path, model_kwargs)
|
|
self.tokenizer = self.model.get_tokenizer()
|
|
self.generation_kwargs = generation_kwargs
|
|
self.generation_kwargs.pop('do_sample', None)
|
|
|
|
assert mode in ['none', 'mid']
|
|
self.mode = mode
|
|
self.use_fastchat_template = use_fastchat_template
|
|
self.stop_words = stop_words
|
|
|
|
def _load_model(self,
|
|
path: str,
|
|
add_model_kwargs: dict = None,
|
|
num_retry: int = 3):
|
|
model_kwargs = DEFAULT_MODEL_KWARGS.copy()
|
|
if add_model_kwargs is not None:
|
|
model_kwargs.update(add_model_kwargs)
|
|
import ray
|
|
|
|
if ray.is_initialized():
|
|
self.logger.info('shutdown ray instance to avoid '
|
|
'"Calling ray.init() again" error.')
|
|
ray.shutdown()
|
|
self.model = LLM(path, **model_kwargs)
|
|
|
|
def generate(self,
|
|
inputs: List[str],
|
|
max_out_len: int,
|
|
stopping_criteria: List[str] = [],
|
|
**kwargs) -> List[str]:
|
|
"""Generate results given a list of inputs.
|
|
|
|
Args:
|
|
inputs (List[str]): A list of strings.
|
|
max_out_len (int): The maximum length of the output.
|
|
|
|
Returns:
|
|
List[str]: A list of generated strings.
|
|
"""
|
|
|
|
if self.mode == 'mid':
|
|
input_ids = self.tokenizer(inputs, truncation=False)['input_ids']
|
|
inputs = []
|
|
for input_id in input_ids:
|
|
if len(input_id) > self.max_seq_len - max_out_len:
|
|
half = int((self.max_seq_len - max_out_len) / 2)
|
|
inputs.append(
|
|
self.tokenizer.decode(input_id[:half],
|
|
skip_special_tokens=True) +
|
|
self.tokenizer.decode(input_id[-half:],
|
|
skip_special_tokens=True))
|
|
else:
|
|
inputs.append(
|
|
self.tokenizer.decode(input_id,
|
|
skip_special_tokens=True))
|
|
|
|
generation_kwargs = kwargs.copy()
|
|
generation_kwargs.update(self.generation_kwargs)
|
|
generation_kwargs.update({'max_tokens': max_out_len})
|
|
_stop = list(set(self.stop_words + stopping_criteria))
|
|
generation_kwargs.update({'stop': _stop})
|
|
sampling_kwargs = SamplingParams(**generation_kwargs)
|
|
outputs = self.model.generate(inputs, sampling_kwargs)
|
|
|
|
prompt_list, output_strs = [], []
|
|
for output in outputs:
|
|
prompt = output.prompt
|
|
generated_text = output.outputs[0].text
|
|
prompt_list.append(prompt)
|
|
output_strs.append(generated_text)
|
|
|
|
return output_strs
|
|
|
|
def get_ppl(self,
|
|
inputs: List[str],
|
|
mask_length: Optional[List[int]] = None) -> List[float]:
|
|
batch_size = len(inputs)
|
|
sampling_kwargs = SamplingParams(prompt_logprobs=0,
|
|
**self.generation_kwargs)
|
|
# forward
|
|
outputs = self.model.generate(inputs, sampling_kwargs)
|
|
# compute ppl
|
|
ce_loss = []
|
|
for i in range(batch_size):
|
|
prompt_logprobs = outputs[i].prompt_logprobs[1:]
|
|
prompt_token_ids = outputs[i].prompt_token_ids[1:]
|
|
prompt_logprobs_list = [
|
|
prompt_logprobs[i][prompt_token_ids[i]]
|
|
for i in range(len(prompt_logprobs))
|
|
]
|
|
prompt_logprobs_list = [i.logprob for i in prompt_logprobs_list]
|
|
prompt_logprobs_list = np.array(prompt_logprobs_list)
|
|
if mask_length is not None:
|
|
prompt_logprobs_list = prompt_logprobs_list[-mask_length[i]:]
|
|
loss = -prompt_logprobs_list.sum(axis=-1) / len(prompt_token_ids)
|
|
ce_loss.append(loss)
|
|
return np.array(ce_loss)
|
|
|
|
def get_loglikelihood(self, inputs: List[str],
|
|
conts: List[str]) -> List[float]:
|
|
mask_length = [
|
|
self.get_token_len(c, add_special_tokens=False) for c in conts
|
|
]
|
|
return -self.get_ppl(inputs, mask_length)
|
|
|
|
def get_token_len(self,
|
|
prompt: str,
|
|
add_special_tokens: bool = True) -> int:
|
|
"""Get lengths of the tokenized strings.
|
|
|
|
Args:
|
|
prompt (str): Input string.
|
|
|
|
Returns:
|
|
int: Length of the input tokens
|
|
"""
|
|
tokenizer = self.model.get_tokenizer()
|
|
token_ids = tokenizer.encode(prompt,
|
|
add_special_tokens=add_special_tokens)
|
|
return len(token_ids)
|