OpenCompass/opencompass/datasets/tydiqa.py
Xingjun.Wang edab1c07ba
[Feature] Support ModelScope datasets (#1289)
* add ceval, gsm8k modelscope surpport

* update race, mmlu, arc, cmmlu, commonsenseqa, humaneval and unittest

* update bbh, flores, obqa, siqa, storycloze, summedits, winogrande, xsum datasets

* format file

* format file

* update dataset format

* support ms_dataset

* udpate dataset for modelscope support

* merge myl_dev and update test_ms_dataset

* udpate dataset for modelscope support

* update readme

* update eval_api_zhipu_v2

* remove unused code

* add get_data_path function

* update readme

* remove tydiqa japanese subset

* add ceval, gsm8k modelscope surpport

* update race, mmlu, arc, cmmlu, commonsenseqa, humaneval and unittest

* update bbh, flores, obqa, siqa, storycloze, summedits, winogrande, xsum datasets

* format file

* format file

* update dataset format

* support ms_dataset

* udpate dataset for modelscope support

* merge myl_dev and update test_ms_dataset

* update readme

* udpate dataset for modelscope support

* update eval_api_zhipu_v2

* remove unused code

* add get_data_path function

* remove tydiqa japanese subset

* update util

* remove .DS_Store

* fix md format

* move util into package

* update docs/get_started.md

* restore eval_api_zhipu_v2.py, add environment setting

* Update dataset

* Update

* Update

* Update

* Update

---------

Co-authored-by: Yun lin <yunlin@U-Q9X2K4QV-1904.local>
Co-authored-by: Yunnglin <mao.looper@qq.com>
Co-authored-by: Yun lin <yunlin@laptop.local>
Co-authored-by: Yunnglin <maoyl@smail.nju.edu.cn>
Co-authored-by: zhangsongyang <zhangsongyang@pjlab.org.cn>
2024-07-29 13:48:32 +08:00

88 lines
3.3 KiB
Python

import json
import os
import re
from collections import Counter
from os import environ
from datasets import Dataset
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.utils import get_data_path
from opencompass.utils.text_postprocessors import general_postprocess
from .base import BaseDataset
class TydiQADataset(BaseDataset):
@staticmethod
def load(path, lang):
path = get_data_path(path)
if environ.get('DATASET_SOURCE') == 'ModelScope':
from modelscope import MsDataset
ms_dataset = MsDataset.load(path, subset_name=lang, split='dev')
dataset_list = []
for line in ms_dataset:
row = line
answer = list(set([i['text'] for i in line['answers']]))
row['answer'] = answer
dataset_list.append(row)
else:
path = os.path.join(path, 'dev', f'{lang}-dev.jsonl')
dataset_list = []
with open(path, 'r', encoding='utf-8') as f:
for line in f:
line = json.loads(line)
answer = list(set([i['text'] for i in line['answers']]))
line['answer'] = answer
dataset_list.append(line)
return Dataset.from_list(dataset_list)
class TydiQAEvaluator(BaseEvaluator):
# This evaluation class is edited from:
# https://github.com/allenai/bi-att-flow/blob/master/squad/evaluate-v1.1.py
def f1_score(self, prediction, ground_truth):
prediction_tokens = general_postprocess(prediction).split()
ground_truth_tokens = general_postprocess(ground_truth).split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def exact_match_score(self, prediction, ground_truth):
return (general_postprocess(prediction) == general_postprocess(
ground_truth))
def metric_max_over_ground_truths(self, metric_fn, prediction,
ground_truths):
scores_for_ground_truths = []
for ground_truth in ground_truths:
score = metric_fn(prediction, ground_truth)
scores_for_ground_truths.append(score)
return max(scores_for_ground_truths)
def score(self, predictions, references):
f1 = exact_match = total = 0
if len(predictions) != len(references):
return {
'error': 'predictions and references have different '
'length'
}
for prediction, reference in zip(predictions, references):
prediction = re.split(r'[\n]', prediction, 1)[0].lower()
exact_match += self.metric_max_over_ground_truths(
self.exact_match_score, prediction, reference)
f1 += self.metric_max_over_ground_truths(self.f1_score, prediction,
reference)
total += 1
exact_match = 100.0 * exact_match / total
f1 = 100.0 * f1 / total
return {'exact_match': exact_match, 'f1': f1}