OpenCompass/opencompass/datasets/agieval/dataset_loader.py
Xingjun.Wang edab1c07ba
[Feature] Support ModelScope datasets (#1289)
* add ceval, gsm8k modelscope surpport

* update race, mmlu, arc, cmmlu, commonsenseqa, humaneval and unittest

* update bbh, flores, obqa, siqa, storycloze, summedits, winogrande, xsum datasets

* format file

* format file

* update dataset format

* support ms_dataset

* udpate dataset for modelscope support

* merge myl_dev and update test_ms_dataset

* udpate dataset for modelscope support

* update readme

* update eval_api_zhipu_v2

* remove unused code

* add get_data_path function

* update readme

* remove tydiqa japanese subset

* add ceval, gsm8k modelscope surpport

* update race, mmlu, arc, cmmlu, commonsenseqa, humaneval and unittest

* update bbh, flores, obqa, siqa, storycloze, summedits, winogrande, xsum datasets

* format file

* format file

* update dataset format

* support ms_dataset

* udpate dataset for modelscope support

* merge myl_dev and update test_ms_dataset

* update readme

* udpate dataset for modelscope support

* update eval_api_zhipu_v2

* remove unused code

* add get_data_path function

* remove tydiqa japanese subset

* update util

* remove .DS_Store

* fix md format

* move util into package

* update docs/get_started.md

* restore eval_api_zhipu_v2.py, add environment setting

* Update dataset

* Update

* Update

* Update

* Update

---------

Co-authored-by: Yun lin <yunlin@U-Q9X2K4QV-1904.local>
Co-authored-by: Yunnglin <mao.looper@qq.com>
Co-authored-by: Yun lin <yunlin@laptop.local>
Co-authored-by: Yunnglin <maoyl@smail.nju.edu.cn>
Co-authored-by: zhangsongyang <zhangsongyang@pjlab.org.cn>
2024-07-29 13:48:32 +08:00

408 lines
17 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# flake8: noqa
import ast
import json
import os
from os import environ
import pandas as pd
import tiktoken
from tqdm import tqdm
from .constructions import ChatGPTSchema, ResultsForHumanSchema
from .utils import extract_answer, read_jsonl, save_jsonl
# define the datasets
english_qa_datasets = [
'lsat-ar', 'lsat-lr', 'lsat-rc', 'logiqa-en', 'sat-math', 'sat-en',
'aqua-rat', 'sat-en-without-passage', 'gaokao-english'
]
chinese_qa_datasets = [
'logiqa-zh', 'jec-qa-kd', 'jec-qa-ca', 'gaokao-chinese',
'gaokao-geography', 'gaokao-history', 'gaokao-biology', 'gaokao-chemistry',
'gaokao-physics', 'gaokao-mathqa'
]
english_cloze_datasets = ['math']
chinese_cloze_datasets = ['gaokao-mathcloze']
multi_choice_datasets = ['jec-qa-kd', 'jec-qa-ca', 'gaokao-physics']
math_output_datasets = ['gaokao-mathcloze', 'math']
def convert_zero_shot(line, dataset_name):
try:
passage = line['passage'] if line['passage'] is not None else ''
if dataset_name in english_qa_datasets:
option_string = 'ABCDEFG'
count = len(line['options'])
if count == 1:
count = 5
return passage + 'Q: ' + line['question'] + ' ' \
+ 'Answer Choices: ' + ' '.join(line['options']) + '\n' + \
'A: Among A through {}, the answer is'.format(option_string[count - 1])
elif dataset_name in chinese_qa_datasets:
option_string = 'ABCDEFG'
count = len(line['options'])
if count == 1:
count = 4
return passage + '问题:' + line['question'] + ' ' \
+ '选项:' + ' '.join(line['options']) + '\n' + \
'答案从A到{}, 我们应选择'.format(option_string[count - 1])
elif dataset_name in english_cloze_datasets:
return passage + 'Q: ' + line['question'] + '\n' \
'A: The answer is'
elif dataset_name in chinese_cloze_datasets:
return passage + '问题:' + line['question'] + '\n' \
'答案:'
except NameError:
print('Dataset not defined.')
prefix = '该问题为单选题,所有选项中必有一个正确答案,且只有一个正确答案。\n'
def convert_zero_shot_CoT_stage1(line, dataset_name):
try:
passage = line['passage'] if line['passage'] is not None else ''
if dataset_name in english_qa_datasets:
return passage + 'Q: ' + line['question'] + ' ' \
+ 'Answer Choices: ' + ' '.join(line['options']) + '\n' + \
"Let's think step by step."
elif dataset_name in chinese_qa_datasets:
option_string = 'ABCDEFG'
count = len(line['options'])
if count == 1:
count = 4
return passage + '问题:' + line['question'] + ' ' \
+ '选项:' + ' '.join(line['options']) + '\n' + \
'从A到{}, 我们应选择什么?让我们逐步思考:'.format(option_string[count - 1])
elif dataset_name in english_cloze_datasets:
return passage + 'Q: ' + line['question'] + '\n' \
"A: Let's think step by step."
elif dataset_name in chinese_cloze_datasets:
return passage + '问题:' + line['question'] + '\n' \
'答案:让我们逐步思考:'
except NameError:
print('Dataset not defined.')
# process few-shot raw_prompts
def combine_prompt(prompt_path,
dataset_name,
load_explanation=True,
chat_mode=False):
skip_passage = False
if dataset_name == 'sat-en-without-passage':
skip_passage = True
dataset_name = 'sat-en'
demostrations = []
# read the prompts by context and explanation
context_row = [0, 1, 3, 5, 7, 9]
explanation_row = [0, 2, 4, 6, 8, 10]
raw_prompts_context = pd.read_csv(prompt_path,
header=0,
skiprows=lambda x: x not in context_row,
keep_default_na=False)
raw_prompts_explanation = pd.read_csv(
prompt_path,
header=0,
skiprows=lambda x: x not in explanation_row,
keep_default_na=False).replace(r'\n\n', '\n', regex=True)
contexts = []
for line in list(raw_prompts_context[dataset_name]):
if line:
# print(line)
contexts.append(ast.literal_eval(line))
explanations = [
exp for exp in raw_prompts_explanation[dataset_name] if exp
]
for idx, (con, exp) in enumerate(zip(contexts, explanations)):
passage = con['passage'] if con[
'passage'] is not None and not skip_passage else ''
question = con['question']
options = con['options'] if con['options'] is not None else ''
label = con['label'] if con['label'] is not None else ''
answer = con[
'answer'] if 'answer' in con and con['answer'] is not None else ''
if dataset_name in english_qa_datasets:
question_input = 'Problem {}. '.format(idx + 1) + passage + ' ' + question + '\n' \
+ 'Choose from the following options: ' + ' '.join(options) + '\n'
question_output = (('Explanation for Problem {}: '.format(idx + 1) + exp + '\n') if load_explanation else '') \
+ 'The answer is therefore {}'.format(label)
elif dataset_name in chinese_qa_datasets:
question_input = '问题 {}. '.format(idx + 1) + passage + ' ' + question + '\n' \
+ '从以下选项中选择: ' + ' '.join(options) + '\n'
question_output = (('问题 {}的解析: '.format(idx + 1) + exp + '\n') if load_explanation else '') \
+ '答案是 {}'.format(label)
elif dataset_name in english_cloze_datasets:
question_input = 'Problem {}. '.format(idx + 1) + question + '\n'
question_output = (('Explanation for Problem {}: '.format(idx + 1) + exp + '\n') if load_explanation else '') \
+ 'The answer is therefore {}'.format(answer)
elif dataset_name in chinese_cloze_datasets:
question_input = '问题 {}. '.format(idx + 1) + question + '\n'
question_output = (('问题 {}的解析: '.format(idx + 1) + exp + '\n') if load_explanation else '') \
+ '答案是 {}'.format(answer)
else:
raise ValueError(
f'During loading few-sot examples, found unknown dataset: {dataset_name}'
)
if chat_mode:
demostrations.append((question_input, question_output))
else:
demostrations.append(question_input + question_output + '\n')
return demostrations
enc = None
def _lazy_load_enc():
global enc
if enc is None:
enc = tiktoken.encoding_for_model('gpt-4')
# cut prompt if reach max token length
def concat_prompt(demos,
dataset_name,
max_tokens,
end_of_example='\n',
verbose=False):
_lazy_load_enc()
demostration_en = 'Here are the answers for the problems in the exam.\n'
demostration_zh = '以下是考试中各个问题的答案。\n'
for i in range(len(demos)):
# print(len(enc.encode(demostration_en)), len(enc.encode(demostration_zh)))
if dataset_name in english_qa_datasets:
demostration_en = demostration_en + demos[i] + end_of_example
elif dataset_name in chinese_qa_datasets:
demostration_zh = demostration_zh + demos[i] + end_of_example
elif dataset_name in english_cloze_datasets:
demostration_en = demostration_en + demos[i] + end_of_example
elif dataset_name in chinese_cloze_datasets:
demostration_zh = demostration_zh + demos[i] + end_of_example
# break if reach max token limit
if len(enc.encode(demostration_en)) < max_tokens and len(
enc.encode(demostration_zh)) < max_tokens:
output = demostration_en if len(demostration_en) > len(
demostration_zh) else demostration_zh
prompt_num = i + 1
else:
break
if verbose:
print('max_tokens set as ', max_tokens, 'actual_tokens is',
len(enc.encode(output)), 'num_shot is', prompt_num)
return output, prompt_num
def concat_prompt_chat_mode(demos,
dataset_name,
max_tokens,
end_of_example='\n',
verbose=False):
_lazy_load_enc()
answers = []
sentences = ''
for i in range(len(demos)):
answers += [
{
'role': 'user',
'content': demos[i][0]
},
{
'role': 'assistant',
'content': demos[i][1]
},
]
sentences += json.dumps(answers[-1])
# break if reach max token limit
if len(enc.encode(sentences)) > max_tokens:
answers.pop()
answers.pop()
break
if verbose:
print('max_tokens set as ', max_tokens, 'actual_tokens is',
len(enc.encode(sentences)), 'num_shot is',
len(answers) // 2)
return answers, len(answers) // 2
def convert_few_shot(line, dataset_name, demo, n_shot, chat_mode=False):
passage = line['passage'] if line['passage'] is not None else ''
question = line['question']
options = line['options'] if line['options'] is not None else ''
if dataset_name in english_qa_datasets:
question_input = 'Problem {}. '.format(n_shot + 1) + passage + ' ' + question + '\n' \
+ 'Choose from the following options: ' + ' '.join(options) + '\n'
# + "Explanation for Problem {}: ".format(n_shot + 1)
if dataset_name in chinese_qa_datasets:
question_input = '问题 {}. '.format(n_shot + 1) + passage + ' ' + question + '\n' \
+ '从以下选项中选择: ' + ' '.join(options) + '\n'
# + "问题 {}的解析: ".format(n_shot + 1)
if dataset_name in english_cloze_datasets:
question_input = 'Problem {}. '.format(n_shot + 1) + question + '\n'
# + "Explanation for Problem {}: ".format(n_shot + 1)
if dataset_name in chinese_cloze_datasets:
question_input = '问题 {}. '.format(n_shot + 1) + question + '\n'
# + "问题 {}的解析: ".format(n_shot + 1)
if chat_mode:
return demo + [
{
'role': 'user',
'content': question_input
},
]
else:
return demo + question_input
def load_dataset(dataset_name,
setting_name,
parent_path,
prompt_path=None,
max_tokens=None,
end_of_example='\n',
chat_mode=False,
verbose=False):
if environ.get('DATASET_SOURCE') == 'ModelScope':
from modelscope import MsDataset
loaded_jsonl = MsDataset.load(parent_path,
subset_name=dataset_name,
split='test')
else:
test_path = os.path.join(parent_path, dataset_name + '.jsonl')
loaded_jsonl = read_jsonl(test_path)
processed = []
if setting_name == 'few-shot-CoT' or setting_name == 'few-shot':
# process demo once if it is few-shot-CoT
processed_demos = combine_prompt(
prompt_path,
dataset_name,
load_explanation=setting_name == 'few-shot-CoT',
chat_mode=chat_mode)
if chat_mode:
chosen_prompt, n_shot = concat_prompt_chat_mode(processed_demos,
dataset_name,
max_tokens,
end_of_example,
verbose=verbose)
else:
chosen_prompt, n_shot = concat_prompt(processed_demos,
dataset_name,
max_tokens,
end_of_example,
verbose=verbose)
if verbose:
loaded_jsonl = tqdm(loaded_jsonl)
for meta_idx, line in enumerate(loaded_jsonl):
if setting_name == 'zero-shot':
ctxt = convert_zero_shot(line, dataset_name)
elif setting_name == 'zero-shot-CoT':
ctxt = convert_zero_shot_CoT_stage1(line, dataset_name)
elif setting_name == 'few-shot-CoT' or setting_name == 'few-shot':
ctxt = convert_few_shot(line, dataset_name, chosen_prompt, n_shot,
chat_mode)
try:
new_instance = ChatGPTSchema(context=ctxt, metadata=meta_idx)
processed.append(new_instance.to_dict())
except NameError:
print('Dataset not defined.')
return processed
def generate_second_stage_input(dataset_name,
input_list,
output_list,
with_format_prompt=False):
try:
english_format_prompt = 'Based on the previous results, your task is to extract the final answer and provide the output enclosed in brackets【】, such as 【0】 or 【A】.'
chinese_format_prompt = '根据以上内容你的任务是把最终的答案提取出来并填在【】中例如【0】或者【A】。'
if dataset_name in english_qa_datasets:
prompt_suffix = 'Therefore, among A through E, the answer is'
if with_format_prompt:
prompt_suffix = english_format_prompt + prompt_suffix
elif dataset_name in chinese_qa_datasets:
prompt_suffix = '因此从A到D, 我们应选择'
if with_format_prompt:
prompt_suffix = chinese_format_prompt + prompt_suffix
elif dataset_name in english_cloze_datasets:
prompt_suffix = 'Therefore, the answer is'
if with_format_prompt:
prompt_suffix = english_format_prompt + prompt_suffix
elif dataset_name in chinese_cloze_datasets:
prompt_suffix = '因此,答案是'
if with_format_prompt:
prompt_suffix = chinese_format_prompt + prompt_suffix
except NameError:
print('Dataset not defined.')
processed = []
for i in range(len(input_list)):
ctxt = '{0}\n{1}\n{2}'.format(input_list[i]['context'],
extract_answer(output_list[i]),
prompt_suffix)
new_instance = ChatGPTSchema(context=ctxt,
metadata=input_list[i]['metadata'])
processed.append(new_instance.to_dict())
return processed
def load_dataset_as_result_schema(dataset_name, parent_path):
if environ.get('DATASET_SOURCE') == 'ModelScope':
from modelscope import MsDataset
loaded_jsonl = MsDataset.load(parent_path,
subset_name=dataset_name,
split='test')
else:
test_path = os.path.join(parent_path, dataset_name + '.jsonl')
loaded_jsonl = read_jsonl(test_path)
processed = []
for i, line in enumerate(loaded_jsonl):
problem_input = convert_zero_shot(line, dataset_name)
processed.append(
ResultsForHumanSchema(
index=i,
problem_input=problem_input,
label=line['label'] if line['label'] else line['answer'],
))
return processed
if __name__ == '__main__':
# set variables
parent_dir = '../../data/V1_1/'
raw_prompt_path = '../data/few_shot_prompts.csv'
# set dataset name to process
setting_name = 'few-shot-CoT' # setting_name can be chosen from ["zero-shot", "zero-shot-CoT", "few-shot-CoT"]
data_name = 'jec-qa-kd'
save_dir = '../../experiment_input/{}/'.format(setting_name)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
processed_data = load_dataset(data_name,
setting_name,
parent_dir,
prompt_path=raw_prompt_path,
max_tokens=2048)
save_jsonl(processed_data,
os.path.join(save_dir, '{}.jsonl'.format(data_name)))