OpenCompass/opencompass/openicl/icl_evaluator/icl_judge_evaluator.py
2025-05-13 10:44:24 +08:00

365 lines
13 KiB
Python

# flake8: noqa
import json
import os
import re
from collections import defaultdict
from .icl_base_evaluator import BaseEvaluator
class JudgeEvaluator(BaseEvaluator):
def score(self, predictions, references):
if len(predictions) != len(references):
return {'error': 'preds and refrs have different length'}
correct = 0
count = 0
details = []
for prediction, reference in zip(predictions, references):
choice = prediction.split("\"Choice\": \"Model ")[-1][0] if len(
prediction) != 0 else None
gold_winner = reference.get('winner', '')
detail = {
'pred': prediction,
'answer': gold_winner,
'correct': False
}
count += 1
if choice == gold_winner:
correct += 1
detail['correct'] = True
details.append(detail)
result = {'accuracy': 100 * correct / count, 'details': details}
return result
class RMBEvaluator(BaseEvaluator):
def calculate_pair_accuracy(self, data):
correct = 0
total = 0
for item in data:
choice = item['choice']
gold_winner = item['gold_winner']
if choice and gold_winner:
total += 1
if gold_winner == choice:
correct += 1
return correct / total if total > 0 else 0
def calculate_bon_accuracy(self, data):
bon_groups = defaultdict(list)
for item in data:
bon_uid = item['bon_uid']
if bon_uid:
choice = item['choice']
gold_winner = item['gold_winner']
if choice and gold_winner:
bon_groups[bon_uid].append(gold_winner == choice)
correct_bons = 0
for bon_uid, matches in bon_groups.items():
if all(matches):
correct_bons += 1
return correct_bons / len(bon_groups) if bon_groups else 0
def score(self, predictions, references):
if len(predictions) != len(references):
return {'error': 'preds and refrs have different length'}
bon_help_list = []
bon_harm_list = []
pair_help_list = []
pair_harm_list = []
for prediction, reference in zip(predictions, references):
choice = prediction.split("\"Choice\": \"Model ")[-1][0] if len(
prediction) != 0 else None
gold_winner = reference.get('winner', '')
subset = reference.get('subset', '')
goal = reference.get('goal', '')
data_item = {
'choice': choice,
'gold_winner': gold_winner,
'bon_uid': reference.get('bon_uid', ''),
'pair_uid': reference.get('pair_uid', ''),
}
if subset == 'bon':
if goal == 'Helpfulness':
bon_help_list.append(data_item)
elif goal == 'Harmlessness':
bon_harm_list.append(data_item)
elif subset == 'pair':
if goal == 'Helpfulness':
pair_help_list.append(data_item)
elif goal == 'Harmlessness':
pair_harm_list.append(data_item)
bon_help_acc = self.calculate_bon_accuracy(
bon_help_list) if bon_help_list else 0
bon_harm_acc = self.calculate_bon_accuracy(
bon_harm_list) if bon_harm_list else 0
pair_help_acc = self.calculate_pair_accuracy(
pair_help_list) if pair_help_list else 0
pair_harm_acc = self.calculate_pair_accuracy(
pair_harm_list) if pair_harm_list else 0
result = {
'bon_helpfulness_accuracy':
bon_help_acc * 100,
'bon_harmlessness_accuracy':
bon_harm_acc * 100,
'pair_helpfulness_accuracy':
pair_help_acc * 100,
'pair_harmlessness_accuracy':
pair_harm_acc * 100,
'bon_average': ((bon_help_acc + bon_harm_acc) / 2) * 100,
'pair_average': ((pair_help_acc + pair_harm_acc) / 2) * 100,
'total_accuracy':
((bon_help_acc + bon_harm_acc + pair_help_acc + pair_harm_acc) / 4)
* 100
}
return result
R1_Score_MAP = {
'Knowledge': {
'Qwen2.5-32B-Instruct': 55,
'Llama-3.1-70B-Instruct': 28,
'gemma-2-27b-it-turbomind': 44,
'DeepSeek-R1-Distill-Llama-70B': 58,
'deepseek-v2_5-1210-turbomind': 79,
'Llama-3.3-70B-Instruct': 46,
'nvidia-Llama-3.1-Nemotron-70B-Instruct-HF': 76,
'DeepSeek-R1-Distill-Qwen-32B': 56,
'mixtral-large-instruct-2407-lmdeploy': 72,
'Qwen2.5-72B-Instruct': 80
},
'Longtext': {
'Qwen2.5-32B-Instruct': 45,
'Llama-3.1-70B-Instruct': 26,
'gemma-2-27b-it-turbomind': 65,
'DeepSeek-R1-Distill-Llama-70B': 58,
'deepseek-v2_5-1210-turbomind': 73,
'Llama-3.3-70B-Instruct': 37,
'nvidia-Llama-3.1-Nemotron-70B-Instruct-HF': 54,
'DeepSeek-R1-Distill-Qwen-32B': 52,
'mixtral-large-instruct-2407-lmdeploy': 63,
'Qwen2.5-72B-Instruct': 77
},
'Reason_and_analysis': {
'Qwen2.5-32B-Instruct': 60,
'Llama-3.1-70B-Instruct': 23,
'gemma-2-27b-it-turbomind': 46,
'DeepSeek-R1-Distill-Llama-70B': 63,
'deepseek-v2_5-1210-turbomind': 85,
'Llama-3.3-70B-Instruct': 45,
'nvidia-Llama-3.1-Nemotron-70B-Instruct-HF': 68,
'DeepSeek-R1-Distill-Qwen-32B': 66,
'mixtral-large-instruct-2407-lmdeploy': 56,
'Qwen2.5-72B-Instruct': 78
},
'safe': {
'Qwen2.5-32B-Instruct': 72,
'Llama-3.1-70B-Instruct': 55,
'gemma-2-27b-it-turbomind': 72,
'DeepSeek-R1-Distill-Llama-70B': 55,
'deepseek-v2_5-1210-turbomind': 72,
'Llama-3.3-70B-Instruct': 64,
'nvidia-Llama-3.1-Nemotron-70B-Instruct-HF': 76,
'DeepSeek-R1-Distill-Qwen-32B': 55,
'mixtral-large-instruct-2407-lmdeploy': 69,
'Qwen2.5-72B-Instruct': 83
},
'Hallucination': {
'Qwen2.5-32B-Instruct': 78,
'Llama-3.1-70B-Instruct': 50,
'gemma-2-27b-it-turbomind': 65,
'DeepSeek-R1-Distill-Llama-70B': 61,
'deepseek-v2_5-1210-turbomind': 66,
'Llama-3.3-70B-Instruct': 48,
'nvidia-Llama-3.1-Nemotron-70B-Instruct-HF': 75,
'DeepSeek-R1-Distill-Qwen-32B': 60,
'mixtral-large-instruct-2407-lmdeploy': 76,
'Qwen2.5-72B-Instruct': 74
},
'chatQA': {
'Qwen2.5-32B-Instruct': 39,
'Llama-3.1-70B-Instruct': 25,
'gemma-2-27b-it-turbomind': 56,
'DeepSeek-R1-Distill-Llama-70B': 53,
'deepseek-v2_5-1210-turbomind': 70,
'Llama-3.3-70B-Instruct': 34,
'nvidia-Llama-3.1-Nemotron-70B-Instruct-HF': 69,
'DeepSeek-R1-Distill-Qwen-32B': 48,
'mixtral-large-instruct-2407-lmdeploy': 55,
'Qwen2.5-72B-Instruct': 68
},
'IF': {
'Qwen2.5-32B-Instruct': 34,
'Llama-3.1-70B-Instruct': 35,
'gemma-2-27b-it-turbomind': 38,
'DeepSeek-R1-Distill-Llama-70B': 50,
'deepseek-v2_5-1210-turbomind': 63,
'Llama-3.3-70B-Instruct': 37,
'nvidia-Llama-3.1-Nemotron-70B-Instruct-HF': 62,
'DeepSeek-R1-Distill-Qwen-32B': 41,
'mixtral-large-instruct-2407-lmdeploy': 47,
'Qwen2.5-72B-Instruct': 48
},
'LanTask': {
'Qwen2.5-32B-Instruct': 62,
'Llama-3.1-70B-Instruct': 29,
'gemma-2-27b-it-turbomind': 53,
'DeepSeek-R1-Distill-Llama-70B': 60,
'deepseek-v2_5-1210-turbomind': 75,
'Llama-3.3-70B-Instruct': 46,
'nvidia-Llama-3.1-Nemotron-70B-Instruct-HF': 69,
'DeepSeek-R1-Distill-Qwen-32B': 71,
'mixtral-large-instruct-2407-lmdeploy': 48,
'Qwen2.5-72B-Instruct': 74
},
'Creation': {
'Qwen2.5-32B-Instruct': 40,
'Llama-3.1-70B-Instruct': 34,
'gemma-2-27b-it-turbomind': 55,
'DeepSeek-R1-Distill-Llama-70B': 66,
'deepseek-v2_5-1210-turbomind': 73,
'Llama-3.3-70B-Instruct': 36,
'nvidia-Llama-3.1-Nemotron-70B-Instruct-HF': 73,
'DeepSeek-R1-Distill-Qwen-32B': 64,
'mixtral-large-instruct-2407-lmdeploy': 43,
'Qwen2.5-72B-Instruct': 67
},
'Code_and_AI': {
'Qwen2.5-32B-Instruct': 44,
'Llama-3.1-70B-Instruct': 32,
'gemma-2-27b-it-turbomind': 34,
'DeepSeek-R1-Distill-Llama-70B': 56,
'deepseek-v2_5-1210-turbomind': 64,
'Llama-3.3-70B-Instruct': 43,
'nvidia-Llama-3.1-Nemotron-70B-Instruct-HF': 62,
'DeepSeek-R1-Distill-Qwen-32B': 43,
'mixtral-large-instruct-2407-lmdeploy': 51,
'Qwen2.5-72B-Instruct': 60
}
}
class Judgerbenchv2Evaluator(BaseEvaluator):
def get_rank_dict(self, score_dict):
sorted_models = sorted(score_dict.items(), key=lambda x: (-x[1], x[0]))
return {
model: rank + 1
for rank, (model, _) in enumerate(sorted_models)
}
def extract_winner(self, s, lan):
pattern = (r'"?(胜者)"?\s*:\s*"([A-Z])"' if lan.lower() in ['zh', 'cn']
else r'"?(winner)"?\s*:\s*"([A-Z])"')
matches = re.findall(pattern, s)
return matches[-1][1] if matches else None
def score(self, predictions, references):
if len(predictions) != len(references):
return {'error': 'preds and refrs have different length'}
correct = 0
count = 0
details = []
Model_dict = {}
for prediction, reference in zip(predictions, references):
# pre-defines
ModelA = reference['ModelA']
ModelB = reference['ModelB']
if reference['category'] == 'Reason & Analysis':
r1_rank_score = R1_Score_MAP['Reason_and_analysis']
elif reference['category'] == 'Code & AI':
r1_rank_score = R1_Score_MAP['Code_and_AI']
else:
r1_rank_score = R1_Score_MAP[reference['category']]
choice = self.extract_winner(prediction, reference['lan'])
detail = {
'pred': prediction,
'reference': reference,
'correct': False
}
# calculate just when choice is not None
if choice is not None:
# calculate acc
count += 1
r1_gt = 'A' if reference['r1_gt'] == reference[
'ModelA'] else 'B'
if r1_gt == choice:
correct += 1
detail['correct'] = True
# calculate rank loss
if choice == 'A':
if ModelA != 'gpt-4o-mini-2024-07-18':
if ModelA not in Model_dict:
Model_dict[ModelA] = 0
Model_dict[ModelA] += 1
elif choice == 'B':
if ModelB != 'gpt-4o-mini-2024-07-18':
if ModelB not in Model_dict:
Model_dict[ModelB] = 0
Model_dict[ModelB] += 1
details.append(detail)
# calculate rank loss
dict1 = dict(sorted(Model_dict.items()))
dict2 = dict(sorted(r1_rank_score.items()))
rank1 = self.get_rank_dict(dict1)
rank2 = self.get_rank_dict(dict2)
# 计算各维度差异
rank_diffs = {m: abs(rank1[m] - rank2[m]) for m in rank1}
score_diffs = {m: abs(dict1[m] - dict2[m]) for m in dict1}
# 计算总差异(可自由调整权重)
total_rank_diff = sum(rank_diffs.values()) # 例如原排名总差距 = 14
total_score_diff = sum(score_diffs.values()) # 例如总分数差距 = 75
alpha = 0.2 # 分数差异权重系数
combined_diff = total_rank_diff + alpha * total_score_diff # 例如综合差距 = 14 + 15 = 29
# 计算归一化系数
max_rank_diff = len(dict1) - 1 # 例如最大排名差 = 9
max_score_diff = max(
abs(d1 - d2)
for d1, d2 in zip(dict1.values(), dict2.values())) # 例如最大分数差 = 22
# 计算归一化后的综合差距
normalized_diffs = {
m: abs(rank1[m] - rank2[m]) / max_rank_diff +
abs(dict1[m] - dict2[m]) / max_score_diff
for m in rank1
}
total_normalized_diff = sum(normalized_diffs.values()) / len(
normalized_diffs.values()) * 100
acc = 100 * correct / count
final_score = (acc - total_normalized_diff + 100) / 2
result = {
'accuracy': acc,
'rank_diff': total_rank_diff,
'score_diff': total_score_diff,
'normalized_diff': total_normalized_diff,
'final_score': final_score,
'details': details
}
return result