OpenCompass/opencompass/configs/datasets/musr/musr_gen_3622bb.py
Linchen Xiao 9de27b4d85
[Update] Update max_out_len for datasets (#1726)
* [Update] Update max_out_len for datasets

* Update eval_regression_chat_objective_fullbench.py

* Update eval_regression_chat.py

* Update eval_regression_chat.py

* Update oc_score_baseline_fullbench.yaml

---------

Co-authored-by: zhulinJulia24 <145004780+zhulinJulia24@users.noreply.github.com>
2024-12-02 11:42:07 +08:00

136 lines
4.6 KiB
Python

from opencompass.datasets import MusrDataset, MusrEvaluator
from opencompass.openicl import PromptTemplate, ZeroRetriever, GenInferencer
DATASET_CONFIGS = {
'murder_mysteries': {
'abbr': 'musr_murder_mysteries',
'name': 'murder_mysteries',
'path': 'opencompass/musr',
'reader_cfg': dict(
input_columns=['context', 'question_text', 'question', 'answer', 'choices', 'choices_str', 'intermediate_trees', 'intermediate_data', 'prompt', 'system_prompt', 'gold_answer', 'scidx', 'self_consistency_n', 'ablation_name'],
output_column='gold_answer',
),
'infer_cfg': dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt='{system_prompt}'
)
],
round=[
dict(
role='HUMAN',
prompt='{prompt}'
),
]
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=2048),
),
'eval_cfg': dict(
evaluator=dict(
type=MusrEvaluator,
answer_index_modifier=1,
self_consistency_n=1
),
),
},
'object_placements': {
'abbr': 'musr_object_placements',
'name': 'object_placements',
'path': 'opencompass/musr',
'reader_cfg': dict(
input_columns=['context', 'question_text', 'question', 'answer', 'choices', 'choices_str', 'intermediate_trees', 'intermediate_data', 'prompt', 'system_prompt', 'gold_answer', 'scidx', 'self_consistency_n', 'ablation_name'],
output_column='gold_answer',
),
'infer_cfg': dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt='{system_prompt}'
)
],
round=[
dict(
role='HUMAN',
prompt='{prompt}'
),
]
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512),
),
'eval_cfg': dict(
evaluator=dict(
type=MusrEvaluator,
answer_index_modifier=1,
self_consistency_n=1
),
),
},
'team_allocation': {
'abbr': 'musr_team_allocation',
'name': 'team_allocation',
'path': 'opencompass/musr',
'reader_cfg': dict(
input_columns=['context', 'question_text', 'question', 'answer', 'choices', 'choices_str', 'intermediate_trees', 'intermediate_data', 'prompt', 'system_prompt', 'gold_answer', 'scidx', 'self_consistency_n', 'ablation_name'],
output_column='gold_answer',
),
'infer_cfg': dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt='{system_prompt}'
)
],
round=[
dict(
role='HUMAN',
prompt='{prompt}'
),
]
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512),
),
'eval_cfg': dict(
evaluator=dict(
type=MusrEvaluator,
answer_index_modifier=1,
self_consistency_n=1
),
),
},
}
musr_datasets = []
for config in DATASET_CONFIGS.values():
dataset = dict(
abbr=config['abbr'],
type=MusrDataset,
path=config['path'],
name=config['name'],
reader_cfg=config['reader_cfg'],
infer_cfg=config['infer_cfg'],
eval_cfg=config['eval_cfg'],
)
musr_datasets.append(dataset)