OpenCompass/opencompass/datasets/calm/evaluation/labeling/CR-C_CRASS.py
Peng Bo edd0ffdf70
Calm dataset (#1287)
* add calm dataset

* modify config max_out_len

* update README

* Modify README

* update README

* update README

* update README

* update README

* update README

* add summarizer and modify readme

* delete summarizer config comment

* update summarizer

* modify same response to all questions

* update README
2024-07-26 11:48:16 +08:00

91 lines
7.2 KiB
Python

from .common_answers import common_true_list, common_false_list, common_option_1_list, common_option_2_list, common_option_3_list, common_option_4_list, common_start_true_dict, common_start_false_dict, common_start_op1_dict, common_start_op2_dict, common_start_op3_dict, common_start_op4_dict
def get_gt_label(item):
return int(item["gt_answer"])
def get_pred_label(model_response, item, prompt_style, type):
model_response = model_response.strip().lower()
low_index = len(model_response)
Answer1 = item["Answer1"].strip().lower()
Answer2 = item["Answer2"].strip().lower()
Answer3 = item["Answer3"].strip().lower()
Answer4 = item["Answer4"].strip().lower()
start_str1_dict = {**common_start_op1_dict,len(Answer1)-1:[f"答案(选项一或选项二或选项三或选项四?):{Answer1[:-1]}",
f"答案(选项一或选项二或选项三或选项四?): {Answer1[:-1]}",
f"answer (option 1 or 2 or 3 or 4?):{Answer1[:-1]}",
f"answer (option 1 or 2 or 3 or 4?): {Answer1[:-1]}"]}
start_str2_dict = {**common_start_op2_dict,len(Answer2)-1:[f"答案(选项一或选项二或选项三或选项四?):{Answer2[:-1]}",
f"答案(选项一或选项二或选项三或选项四?): {Answer2[:-1]}",
f"answer (option 1 or 2 or 3 or 4?):{Answer2[:-1]}",
f"answer (option 1 or 2 or 3 or 4?): {Answer2[:-1]}"]}
start_str3_dict = {**common_start_op3_dict,len(Answer3)-1:[f"答案(选项一或选项二或选项三或选项四?):{Answer3[:-1]}",
f"答案(选项一或选项二或选项三或选项四?): {Answer3[:-1]}",
f"answer (option 1 or 2 or 3 or 4?):{Answer3[:-1]}",
f"answer (option 1 or 2 or 3 or 4?): {Answer3[:-1]}"]}
start_str4_dict = {**common_start_op4_dict,
len(Answer4)-1:[f"答案(选项一或选项二或选项三或选项四?):{Answer4[:-1]}",
f"答案(选项一或选项二或选项三或选项四?): {Answer4[:-1]}",
f"answer (option 1 or 2 or 3 or 4?):{Answer4[:-1]}",
f"answer (option 1 or 2 or 3 or 4?): {Answer4[:-1]}"]}
start_option1_list,start_option2_list,start_option3_list,start_option4_list = [],[],[],[]
# some of the model will give response containing the question, we usually preprocess the response to remove the question part, but sometimes due to the model's response format, some of the question part is not removed, so here we are checking the response with the question part as well.
for key1, key2, key3, key4 in zip(start_str1_dict.keys(), start_str2_dict.keys(), start_str3_dict.keys(), start_str4_dict.keys()):
for str1, str2, str3, str4 in zip(start_str1_dict[key1], start_str2_dict[key2], start_str3_dict[key3], start_str4_dict[key4]):
for i in range(key1, len(str1)+1):
start_option1_list.append(str1[-i:])
for i in range(key2, len(str2)+1):
start_option2_list.append(str2[-i:])
for i in range(key3, len(str3)+1):
start_option3_list.append(str3[-i:])
for i in range(key4, len(str4)+1):
start_option4_list.append(str4[-i:])
inner_option1_list = ["answer (option 1 or 2 or 3 or 4 ?): {}".format(Answer1[:-1]),"(option 1 or 2 or 3 or 4?): {}".format({Answer1[:-1]})]+common_option_1_list
inner_option2_list = ["answer (option 1 or 2 or 3 or 4 ?): {}".format(Answer2[:-1]),"(option 1 or 2 or 3 or 4?): {}".format({Answer2[:-1]}), ]+common_option_2_list
inner_option3_list = ["answer (option 1 or 2 or 3 or 4 ?): {}".format(Answer3[:-1]),"(option 1 or 2 or 3 or 4?): {}".format({Answer3[:-1]})]+common_option_3_list
inner_option4_list = ["answer (option 1 or 2 or 3 or 4 ?): {}".format(Answer4[:-1]),"(option 1 or 2 or 3 or 4?): {}".format({Answer4[:-1]})]+common_option_4_list
if any(option in model_response for option in ["选项一或选项二","选项三或选项四"]) \
or "选项一" in model_response and "选项二" in model_response and "选项三" in model_response and "选项四" in model_response:
return -1
elif model_response.startswith(tuple(start_option1_list)) \
or any(Answer1 == option for option in [model_response]) \
or len(Answer1) > 1 and len(model_response) > 0 and (model_response in Answer1 or Answer1 in model_response):
label = 1
elif model_response.startswith(tuple(start_option2_list)) \
or any(Answer2 == option for option in [model_response]) \
or len(Answer2) > 1 and len(model_response) > 0 and (model_response in Answer2 or Answer2 in model_response):
label = 2
elif model_response.startswith(tuple(start_option3_list)) \
or any(Answer3 == option for option in [model_response]) \
or len(Answer3) > 1 and len(model_response) > 0 and (model_response in Answer3 or Answer3 in model_response):
label = 3
elif model_response.startswith(tuple(start_option4_list)) \
or any(Answer4 == option for option in [model_response]) \
or len(Answer4) > 1 and len(model_response) > 0 and (model_response in Answer4 or Answer4 in model_response):
label = 4
elif any(model_response.find(option)>-1 and (low_index:=min(low_index, model_response.find(option)))>-1 for option in inner_option1_list):
label = 1
if any(option in model_response and model_response.find(option) < low_index for option in inner_option2_list):
label = 2
if any(option in model_response and model_response.find(option) < low_index for option in inner_option3_list):
label = 3
if any(option in model_response and model_response.find(option) < low_index for option in inner_option4_list):
label = 4
elif any(model_response.find(option) > -1 for option in inner_option2_list):
label = 2
if any(option in model_response and model_response.find(option) < low_index for option in inner_option3_list):
label = 3
if any(option in model_response and model_response.find(option) < low_index for option in inner_option4_list):
label = 4
elif any(model_response.find(option) > -1 for option in inner_option3_list):
label = 3
if any(option in model_response and model_response.find(option) < low_index for option in inner_option4_list):
label = 4
elif any(model_response.find(option) > -1 for option in inner_option4_list):
label = 4
else:
return -1
return label