OpenCompass/opencompass/datasets/calm/evaluation/labeling/CA-B_FP.py
Peng Bo edd0ffdf70
Calm dataset (#1287)
* add calm dataset

* modify config max_out_len

* update README

* Modify README

* update README

* update README

* update README

* update README

* update README

* add summarizer and modify readme

* delete summarizer config comment

* update summarizer

* modify same response to all questions

* update README
2024-07-26 11:48:16 +08:00

38 lines
2.4 KiB
Python

from .common_answers import common_true_list, common_false_list, common_option_1_list, common_option_2_list, common_option_3_list, common_option_4_list, common_start_true_dict, common_start_false_dict, common_start_op1_dict, common_start_op2_dict, common_start_op3_dict, common_start_op4_dict
def get_gt_label(item):
return item["gt_answer"]
def get_pred_label(model_response, item, prompt_style, type):
model_response = model_response.strip().lower()
low_index = len(model_response)
start_str1_dict = common_start_true_dict
start_str2_dict = common_start_false_dict
start_option1_list,start_option2_list = [],[]
# some of the model will give response containing the question, we usually preprocess the response to remove the question part, but sometimes due to the model's response format, some of the question part is not removed, so here we are checking the response with the question part as well.
for key1, key2 in zip(start_str1_dict.keys(), start_str2_dict.keys()):
for str1,str2 in zip(start_str1_dict[key1], start_str2_dict[key2]):
for i in range(key1, len(str1)+1):
start_option1_list.append(str1[-i:])
for i in range(key2, len(str2)+1):
start_option2_list.append(str2[-i:])
inner_option1_list = ["serves as the parent node of","serves as a parent node of"]+common_true_list
inner_option2_list = common_false_list
if model_response.startswith(tuple(start_option1_list)):
label = 1
elif model_response.startswith(tuple(start_option2_list)):
label = 0
elif any(model_response.find(option)>-1 and (low_index:=min(low_index, model_response.find(option)))>-1 for option in inner_option1_list) \
or "yes" in model_response and "is the parent of" in model_response \
or "" in model_response and "父节点" in model_response:
label = 1
if any(option in model_response and model_response.find(option) < low_index for option in inner_option2_list):
label = 0
elif any(response in model_response for response in inner_option2_list)\
or ("不是" in model_response and "父节点" in model_response):
label = 0
else:
return -1
return label