mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* add calm dataset * modify config max_out_len * update README * Modify README * update README * update README * update README * update README * update README * add summarizer and modify readme * delete summarizer config comment * update summarizer * modify same response to all questions * update README
193 lines
7.6 KiB
Python
193 lines
7.6 KiB
Python
import importlib
|
|
from pathlib import Path
|
|
import json
|
|
import os
|
|
from ..utils.load_items import load_query_instances
|
|
|
|
def get_get_prompt_func(task):
|
|
"""
|
|
Returns the appropriate prompt generation function based on the given task.
|
|
|
|
Args:
|
|
task (str): The name of the task for which the prompt function is required.
|
|
|
|
Returns:
|
|
function: The prompt generation function for the specified task.
|
|
|
|
Raises:
|
|
NotImplementedError: If no prompt function is found for the given task.
|
|
"""
|
|
task_to_module_map = {
|
|
# association/
|
|
# correlation/
|
|
"CORR-B_correlation_CN":"CORR-B_correlation",
|
|
"CORR-B_correlation_EN":"CORR-B_correlation",
|
|
# explaining_away_effect/
|
|
"EAE-B_exp-away_CN":"EAE-B_exp-away",
|
|
"EAE-B_exp-away_EN":"EAE-B_exp-away",
|
|
# causal_discovery/
|
|
# abstract_reasoning/
|
|
"AR-B_CaLM-AR_CN":"AR-B_CaLM-AR",
|
|
"AR-B_CaLM-AR_EN":"AR-B_CaLM-AR",
|
|
# causal_attribution/
|
|
"CA-B_FA_CN":"CA-B_FA",
|
|
"CA-B_FA_EN":"CA-B_FA",
|
|
"CA-B_FP_CN":"CA-B_FP",
|
|
"CA-B_FP_EN":"CA-B_FP",
|
|
# event_causality_identification/
|
|
"ECI-B_CTB_CN":"ECI-B_CTB",
|
|
"ECI-B_CTB_EN":"ECI-B_CTB",
|
|
"ECI-B_ESC_CN":"ECI-B_ESC",
|
|
"ECI-B_ESC_EN":"ECI-B_ESC",
|
|
"ECI-B_MAVEN-ERE_CN":"ECI-B_MAVEN-ERE",
|
|
"ECI-B_MAVEN-ERE_EN":"ECI-B_MAVEN-ERE",
|
|
# pairwise_causal_discovery/
|
|
"PCD-B_COPA_CN":"PCD-B_COPA",
|
|
"PCD-B_COPA_EN":"PCD-B_COPA",
|
|
"PCD-B_E-CARE_CN":"PCD-B_E-CARE",
|
|
"PCD-B_E-CARE_EN":"PCD-B_E-CARE",
|
|
"PCD-C_COPA_CN":"PCD-C_COPA",
|
|
"PCD-C_COPA_EN":"PCD-C_COPA",
|
|
"PCD-C_E-CARE_CN":"PCD-C_E-CARE",
|
|
"PCD-C_E-CARE_EN":"PCD-C_E-CARE",
|
|
# counterfactual/
|
|
# actual_causality/
|
|
"AC-B_causal_judgement_CN":"AC-B_causal_judgement",
|
|
"AC-B_causal_judgement_EN":"AC-B_causal_judgement",
|
|
# causal_explanation_generation/
|
|
"CEG-O_E-CARE_CN":"CEG-O_E-CARE",
|
|
"CEG-O_E-CARE_EN":"CEG-O_E-CARE",
|
|
# counterfactual_reasoning/
|
|
"CR-B_det-counterfactual_CN":"CR-B_det-counterfactual",
|
|
"CR-B_det-counterfactual_EN":"CR-B_det-counterfactual",
|
|
"CR-C_CRASS_CN":"CR-C_CRASS",
|
|
"CR-C_CRASS_EN":"CR-C_CRASS",
|
|
# effect_of_the_treatment_on_the_treated/
|
|
"ETT-B_ETT-natural_CN":"ETT",
|
|
"ETT-B_ETT-natural_EN":"ETT",
|
|
"ETT-P_ETT-basic_CN":"ETT",
|
|
"ETT-P_ETT-basic_EN":"ETT",
|
|
"ETT-P_ETT-hard_CN":"ETT",
|
|
"ETT-P_ETT-hard_EN":"ETT",
|
|
# natural_direct_effect/
|
|
"NDE-B_NDE-natural_CN":"NDE",
|
|
"NDE-B_NDE-natural_EN":"NDE",
|
|
"NDE-P_NDE-basic_CN":"NDE",
|
|
"NDE-P_NDE-basic_EN":"NDE",
|
|
"NDE-P_NDE-hard_CN":"NDE",
|
|
"NDE-P_NDE-hard_EN":"NDE",
|
|
# natural_indirect_effect/
|
|
"NIE-B_NIE-natural_CN":"NIE",
|
|
"NIE-B_NIE-natural_EN":"NIE",
|
|
"NIE-P_NIE-basic_CN":"NIE",
|
|
"NIE-P_NIE-basic_EN":"NIE",
|
|
"NIE-P_NIE-hard_CN":"NIE",
|
|
"NIE-P_NIE-hard_EN":"NIE",
|
|
# probability_of_necessity/
|
|
"PN-P_PN-basic_CN":"PN",
|
|
"PN-P_PN-basic_EN":"PN",
|
|
"PN-P_PN-hard_CN":"PN",
|
|
"PN-P_PN-hard_EN":"PN",
|
|
# probability_of_sufficiency/
|
|
"PS-P_PS-basic_CN":"PS",
|
|
"PS-P_PS-basic_EN":"PS",
|
|
"PS-P_PS-hard_CN":"PS",
|
|
"PS-P_PS-hard_EN":"PS",
|
|
# intervention/
|
|
# average_treatment_effect/
|
|
"ATE-B_ATE-natural_CN":"ATE",
|
|
"ATE-B_ATE-natural_EN":"ATE",
|
|
"ATE-P_ATE-basic_CN":"ATE",
|
|
"ATE-P_ATE-basic_EN":"ATE",
|
|
"ATE-P_ATE-hard_CN":"ATE",
|
|
"ATE-P_ATE-hard_EN":"ATE",
|
|
# backdoor_adjustment_set/
|
|
"BAS-B_backadj_CN":"BAS-B_backadj",
|
|
"BAS-B_backadj_EN":"BAS-B_backadj",
|
|
"BAS-C_max-BAS_CN":"BAS-C_max-BAS",
|
|
"BAS-C_max-BAS_EN":"BAS-C_max-BAS",
|
|
"BAS-C_min-BAS_CN":"BAS-C_min-BAS",
|
|
"BAS-C_min-BAS_EN":"BAS-C_min-BAS",
|
|
"BAS-C_mix-BAS_CN":"BAS-C_mix-BAS",
|
|
"BAS-C_mix-BAS_EN":"BAS-C_mix-BAS",
|
|
# causal_effect_identification/
|
|
"CEI-B_0.2-UC_CN":"CEI-B",
|
|
"CEI-B_0.2-UC_EN":"CEI-B",
|
|
"CEI-B_0.4-UC_CN":"CEI-B",
|
|
"CEI-B_0.4-UC_EN":"CEI-B",
|
|
"CEI-B_0.6-UC_CN":"CEI-B",
|
|
"CEI-B_0.6-UC_EN":"CEI-B",
|
|
"CEI-B_0.8-UC_CN":"CEI-B",
|
|
"CEI-B_0.8-UC_EN":"CEI-B",
|
|
# collider_bias/
|
|
"CB-B_collider-bias_CN":"CB-B_collider-bias",
|
|
"CB-B_collider-bias_EN":"CB-B_collider-bias",
|
|
# controlled_direct_effect/
|
|
"CDE-B_CDE-natural_CN":"CDE",
|
|
"CDE-B_CDE-natural_EN":"CDE",
|
|
"CDE-P_CDE-basic_CN":"CDE",
|
|
"CDE-P_CDE-basic_EN":"CDE",
|
|
"CDE-P_CDE-hard_CN":"CDE",
|
|
"CDE-P_CDE-hard_EN":"CDE",
|
|
# frontdoor_adjustment_set/
|
|
"FAS-C_FAS_CN":"FAS-C_FAS",
|
|
"FAS-C_FAS_EN":"FAS-C_FAS",
|
|
# instrumental_variable/
|
|
"IV-C_CaLM-IV_CN":"IV-C_CaLM-IV",
|
|
"IV-C_CaLM-IV_EN":"IV-C_CaLM-IV",
|
|
}
|
|
|
|
module_name = task_to_module_map.get(task)
|
|
|
|
if module_name:
|
|
module = importlib.import_module("opencompass.datasets.calm.data_processing.prompt."+module_name)
|
|
return module.get_prompt
|
|
else:
|
|
raise NotImplementedError(f"No get_prompt function found for task {task}.")
|
|
|
|
|
|
def generate_question_list(dataset_path, prompt_style):
|
|
"""
|
|
Generates a list of questions from the dataset based on the specified prompt style.
|
|
|
|
Args:
|
|
dataset_path (str): The path to the dataset JSON file.
|
|
prompt_style (str): The style of prompt to be used for generating questions.
|
|
|
|
Returns:
|
|
list: A list of question dictionaries, each containing an item from the dataset along with its corresponding question.
|
|
|
|
Raises:
|
|
AssertionError: If the task name and prompt style do not match the expected language suffix.
|
|
"""
|
|
# Extract task name from dataset path
|
|
dataset_path = Path(dataset_path)
|
|
task_name = dataset_path.name[:-len(".json")]
|
|
|
|
# Validate prompt style based on task language
|
|
if task_name.endswith("CN"):
|
|
assert prompt_style.endswith("-CN")
|
|
else:
|
|
assert not prompt_style.endswith("-CN")
|
|
|
|
# Get prompt generation function based on task
|
|
get_prompt_func = get_get_prompt_func(task=task_name)
|
|
|
|
# Load items from dataset
|
|
item_list = load_query_instances(dataset_path)
|
|
question_list = []
|
|
|
|
# Generate questions for each item in the dataset
|
|
for idx, item in enumerate(item_list):
|
|
question = get_prompt_func(task_name=task_name, prompt_style = prompt_style,
|
|
item=item)
|
|
question_list.append({
|
|
"question": question,
|
|
"gt_item": item,
|
|
})
|
|
return question_list
|
|
|
|
|
|
|
|
|