OpenCompass/opencompass/openicl/icl_inferencer/icl_attack_inferencer.py
Hubert a11cb45c83
[Feat] implementation for support promptbench (#239)
* [Feat] support adv_glue dataset for adversarial robustness

* reorg files

* minor fix

* minor fix

* support prompt bench demo

* minor fix

* minor fix

* minor fix

* minor fix

* minor fix

* minor fix

* minor fix

* minor fix
2023-09-15 15:06:53 +08:00

211 lines
8.6 KiB
Python

"""Direct Generation Inferencer."""
import os
import os.path as osp
from typing import List, Optional
import mmengine
import torch
from tqdm import tqdm
from opencompass.models.base import BaseModel
from opencompass.registry import (ICL_EVALUATORS, ICL_INFERENCERS,
TEXT_POSTPROCESSORS)
from ..icl_prompt_template import PromptTemplate
from ..icl_retriever import BaseRetriever
from ..utils.logging import get_logger
from .icl_base_inferencer import BaseInferencer, GenInferencerOutputHandler
logger = get_logger(__name__)
@ICL_INFERENCERS.register_module()
class AttackInferencer(BaseInferencer):
"""Generation Inferencer class to directly evaluate by generation.
Attributes:
model (:obj:`BaseModelWrapper`, optional): The module to inference.
max_out_len (:obj:`int`, optional): Maximum number of tokenized words
of the output.
adv_key (:obj:`str`): Prompt key in template to be attacked.
metric_key (:obj:`str`): Metric key to be returned and compared.
Defaults to `accuracy`.
max_seq_len (:obj:`int`, optional): Maximum number of tokenized words
allowed by the LM.
batch_size (:obj:`int`, optional): Batch size for the
:obj:`DataLoader`.
output_json_filepath (:obj:`str`, optional): File path for output
`JSON` file.
output_json_filename (:obj:`str`, optional): File name for output
`JSON` file.
gen_field_replace_token (:obj:`str`, optional): Used to replace the
generation field token when generating prompts.
save_every (:obj:`int`, optional): Save intermediate results every
`save_every` epochs.
generation_kwargs (:obj:`Dict`, optional): Parameters for the
:obj:`model.generate()` method.
"""
def __init__(
self,
model: BaseModel,
max_out_len: int,
adv_key: str,
metric_key: str = 'accuracy',
max_seq_len: Optional[int] = None,
batch_size: Optional[int] = 1,
gen_field_replace_token: Optional[str] = '',
output_json_filepath: Optional[str] = './icl_inference_output',
output_json_filename: Optional[str] = 'predictions',
save_every: Optional[int] = None,
fix_id_list: Optional[List[int]] = None,
dataset_cfg: Optional[List[int]] = None,
**kwargs) -> None:
super().__init__(
model=model,
max_seq_len=max_seq_len,
batch_size=batch_size,
output_json_filename=output_json_filename,
output_json_filepath=output_json_filepath,
**kwargs,
)
self.adv_key = adv_key
self.metric_key = metric_key
self.dataset_cfg = dataset_cfg
self.eval_cfg = dataset_cfg['eval_cfg']
self.output_column = dataset_cfg['reader_cfg']['output_column']
self.gen_field_replace_token = gen_field_replace_token
self.max_out_len = max_out_len
self.fix_id_list = fix_id_list
if self.model.is_api and save_every is None:
save_every = 1
self.save_every = save_every
def predict(self, adv_prompt) -> List:
# 1. Preparation for output logs
output_handler = GenInferencerOutputHandler()
# if output_json_filepath is None:
output_json_filepath = self.output_json_filepath
# if output_json_filename is None:
output_json_filename = self.output_json_filename
# 2. Get results of retrieval process
if 'Fix' in self.retriever.__class__.__name__:
ice_idx_list = self.retriever.retrieve(self.fix_id_list)
else:
ice_idx_list = self.retriever.retrieve()
# 3. Generate prompts for testing input
prompt_list, label_list = self.get_generation_prompt_list_from_retriever_indices( # noqa
ice_idx_list, {self.adv_key: adv_prompt},
self.retriever,
self.gen_field_replace_token,
max_seq_len=self.max_seq_len,
ice_template=self.ice_template,
prompt_template=self.prompt_template)
# Create tmp json file for saving intermediate results and future
# resuming
index = 0
tmp_json_filepath = os.path.join(output_json_filepath,
'tmp_' + output_json_filename)
if osp.exists(tmp_json_filepath):
# TODO: move resume to output handler
tmp_result_dict = mmengine.load(tmp_json_filepath)
output_handler.results_dict = tmp_result_dict
index = len(tmp_result_dict)
# 4. Wrap prompts with Dataloader
dataloader = self.get_dataloader(prompt_list[index:], self.batch_size)
# 5. Inference for prompts in each batch
logger.info('Starting inference process...')
for entry in tqdm(dataloader, disable=not self.is_main_process):
# 5-1. Inference with local model
with torch.no_grad():
parsed_entries = self.model.parse_template(entry, mode='gen')
results = self.model.generate_from_template(
entry, max_out_len=self.max_out_len)
generated = results
# 5-3. Save current output
for prompt, prediction in zip(parsed_entries, generated):
output_handler.save_results(prompt, prediction, index)
index = index + 1
# 5-4. Save intermediate results
if (self.save_every is not None and index % self.save_every == 0
and self.is_main_process):
output_handler.write_to_json(output_json_filepath,
'tmp_' + output_json_filename)
# 6. Output
if self.is_main_process:
os.makedirs(output_json_filepath, exist_ok=True)
output_handler.write_to_json(output_json_filepath,
output_json_filename)
if osp.exists(tmp_json_filepath):
os.remove(tmp_json_filepath)
pred_strs = [
sample['prediction']
for sample in output_handler.results_dict.values()
]
if 'pred_postprocessor' in self.eval_cfg:
kwargs = self.eval_cfg['pred_postprocessor'].copy()
proc = TEXT_POSTPROCESSORS.get(kwargs.pop('type'))
pred_strs = [proc(s, **kwargs) for s in pred_strs]
icl_evaluator = ICL_EVALUATORS.build(self.eval_cfg['evaluator'])
result = icl_evaluator.score(predictions=pred_strs,
references=label_list)
score = result.get(self.metric_key)
# try to shrink score to range 0-1
return score / 100 if score > 1 else score
def get_generation_prompt_list_from_retriever_indices(
self,
ice_idx_list: List[List[int]],
extra_prompt: dict,
retriever: BaseRetriever,
gen_field_replace_token: str,
max_seq_len: Optional[int] = None,
ice_template: Optional[PromptTemplate] = None,
prompt_template: Optional[PromptTemplate] = None):
prompt_list = []
label_list = []
for idx, ice_idx in enumerate(ice_idx_list):
ice = retriever.generate_ice(ice_idx, ice_template=ice_template)
prompt = retriever.generate_prompt_for_adv_generate_task(
idx,
ice,
extra_prompt,
gen_field_replace_token=gen_field_replace_token,
ice_template=ice_template,
prompt_template=prompt_template)
label = retriever.test_ds[idx][self.output_column]
label_list.append(label)
if max_seq_len is not None:
prompt_token_num = self.model.get_token_len_from_template(
prompt, mode='gen')
while len(ice_idx) > 0 and prompt_token_num > max_seq_len:
ice_idx = ice_idx[:-1]
ice = retriever.generate_ice(ice_idx,
ice_template=ice_template)
prompt = retriever.generate_prompt_for_adv_generate_task(
idx,
ice,
extra_prompt,
gen_field_replace_token=gen_field_replace_token,
ice_template=ice_template,
prompt_template=prompt_template)
prompt_token_num = self.model.get_token_len_from_template(
prompt, mode='gen')
prompt_list.append(prompt)
return prompt_list, label_list