OpenCompass/opencompass/models/lightllm_api.py
2024-05-28 23:09:59 +08:00

351 lines
12 KiB
Python

import json
import re
import time
from concurrent.futures import ThreadPoolExecutor
from typing import Dict, List, Optional, Union
import numpy as np
import requests
from opencompass.registry import MODELS
from opencompass.utils.logging import get_logger
from opencompass.utils.prompt import PromptList
from .base import BaseModel
from .base_api import BaseAPIModel, TokenBucket
PromptType = Union[PromptList, str]
@MODELS.register_module()
class LightllmAPI(BaseModel):
is_api: bool = True
def __init__(
self,
path: str = 'LightllmAPI',
url: str = 'http://localhost:8080/generate',
meta_template: Optional[Dict] = None,
max_workers_per_task: int = 2,
rate_per_worker: int = 2,
retry: int = 2,
generation_kwargs: Optional[Dict] = dict(),
):
super().__init__(path=path,
meta_template=meta_template,
generation_kwargs=generation_kwargs)
self.logger = get_logger()
self.url = url
self.retry = retry
self.generation_kwargs = generation_kwargs
self.max_out_len = self.generation_kwargs.get('max_new_tokens', 1024)
self.meta_template = meta_template
self.max_workers_per_task = max_workers_per_task
self.token_bucket = TokenBucket(rate_per_worker, False)
def generate(self, inputs: List[str], max_out_len: int,
**kwargs) -> List[str]:
"""Generate results given a list of inputs.
Args:
inputs (List[str]): A list of strings or PromptDicts.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
Returns:
List[str]: A list of generated strings.
"""
with ThreadPoolExecutor(
max_workers=self.max_workers_per_task) as executor:
results = list(
executor.map(self._generate, inputs,
[self.max_out_len] * len(inputs)))
return results
def _generate(self, input: str, max_out_len: int) -> str:
max_num_retries = 0
while max_num_retries < self.retry:
self.wait()
header = {'content-type': 'application/json'}
try:
self.logger.debug(f'input: {input}')
data = dict(inputs=input, parameters=self.generation_kwargs)
raw_response = requests.post(self.url,
headers=header,
data=json.dumps(data))
except requests.ConnectionError:
self.logger.error('Got connection error, retrying...')
continue
try:
response = raw_response.json()
generated_text = response['generated_text']
if isinstance(generated_text, list):
generated_text = generated_text[0]
self.logger.debug(f'generated_text: {generated_text}')
return generated_text
except requests.JSONDecodeError:
self.logger.error('JsonDecode error, got',
str(raw_response.content))
except KeyError:
self.logger.error(f'KeyError. Response: {str(response)}')
max_num_retries += 1
raise RuntimeError('Calling LightllmAPI failed after retrying for '
f'{max_num_retries} times. Check the logs for '
'details.')
def get_ppl(self, inputs: List[str], max_out_len: int,
**kwargs) -> List[float]:
"""Generate results given a list of inputs.
Args:
inputs (List[str]): A list of strings or PromptDicts.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
Returns:
List[str]: A list of generated strings.
"""
with ThreadPoolExecutor(
max_workers=self.max_workers_per_task) as executor:
results = list(
executor.map(self._get_ppl, inputs,
[self.max_out_len] * len(inputs)))
return np.array(results)
def _get_ppl(self, input: str, max_out_len: int) -> float:
max_num_retries = 0
if max_out_len is None:
max_out_len = 1
while max_num_retries < self.retry:
self.wait()
header = {'content-type': 'application/json'}
try:
data = dict(inputs=input, parameters=self.generation_kwargs)
raw_response = requests.post(self.url,
headers=header,
data=json.dumps(data))
except requests.ConnectionError:
self.logger.error('Got connection error, retrying...')
continue
try:
response = raw_response.json()
assert ('prompt_token_ids' in response and 'prompt_logprobs'
in response), f'prompt_token_ids and prompt_logprobs \
must be in the output. \
Please consider adding \
--return_all_prompt_logprobs argument \
when starting lightllm service. Response: {str(response)}'
prompt_token_ids = response['prompt_token_ids'][1:]
prompt_logprobs = [
item[1] for item in response['prompt_logprobs']
]
logprobs = [
item[str(token_id)] for token_id, item in zip(
prompt_token_ids, prompt_logprobs)
]
if len(logprobs) == 0:
return 0.0
ce_loss = -sum(logprobs) / len(logprobs)
return ce_loss
except requests.JSONDecodeError:
self.logger.error('JsonDecode error, got',
str(raw_response.content))
max_num_retries += 1
raise RuntimeError('Calling LightllmAPI failed after retrying for '
f'{max_num_retries} times. Check the logs for '
'details.')
def wait(self):
"""Wait till the next query can be sent.
Applicable in both single-thread and multi-thread environments.
"""
return self.token_bucket.get_token()
def get_token_len(self, prompt: str) -> int:
"""Get lengths of the tokenized string. Only English and Chinese
characters are counted for now. Users are encouraged to override this
method if more accurate length is needed.
Args:
prompt (str): Input string.
Returns:
int: Length of the input tokens
"""
english_parts = re.findall(r'[A-Za-z0-9]+', prompt)
chinese_parts = re.findall(r'[\u4e00-\u9FFF]+', prompt)
# Count English words
english_count = sum(len(part.split()) for part in english_parts)
# Count Chinese words
chinese_count = sum(len(part) for part in chinese_parts)
return english_count + chinese_count
class LightllmChatAPI(BaseAPIModel):
"""Model wrapper around YiAPI.
Documentation:
Args:
path (str): The name of YiAPI model.
e.g. `moonshot-v1-32k`
key (str): Authorization key.
query_per_second (int): The maximum queries allowed per second
between two consecutive calls of the API. Defaults to 1.
max_seq_len (int): Unused here.
meta_template (Dict, optional): The model's meta prompt
template if needed, in case the requirement of injecting or
wrapping of any meta instructions.
retry (int): Number of retires if the API call fails. Defaults to 2.
"""
def __init__(
self,
path: str,
url: str,
query_per_second: int = 2,
max_seq_len: int = 2048,
meta_template: Optional[Dict] = None,
retry: int = 2,
):
super().__init__(path=path,
max_seq_len=max_seq_len,
query_per_second=query_per_second,
meta_template=meta_template,
retry=retry)
self.url = url
self.model = path
def generate(
self,
inputs: List[PromptType],
max_out_len: int = 512,
) -> List[str]:
"""Generate results given a list of inputs.
Args:
inputs (List[PromptType]): A list of strings or PromptDicts.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
Returns:
List[str]: A list of generated strings.
"""
with ThreadPoolExecutor() as executor:
results = list(
executor.map(self._generate, inputs,
[max_out_len] * len(inputs)))
self.flush()
return results
def _generate(
self,
input: PromptType,
max_out_len: int = 512,
) -> str:
"""Generate results given an input.
Args:
inputs (PromptType): A string or PromptDict.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
Returns:
str: The generated string.
"""
assert isinstance(input, (str, PromptList))
if isinstance(input, str):
messages = [{'role': 'user', 'content': input}]
else:
messages = []
msg_buffer, last_role = [], None
for item in input:
item['role'] = 'assistant' if item['role'] == 'BOT' else 'user'
if item['role'] != last_role and last_role is not None:
messages.append({
'content': '\n'.join(msg_buffer),
'role': last_role
})
msg_buffer = []
msg_buffer.append(item['prompt'])
last_role = item['role']
messages.append({
'content': '\n'.join(msg_buffer),
'role': last_role
})
data = {'messages': messages}
max_num_retries = 0
while max_num_retries < self.retry:
self.acquire()
try:
raw_response = requests.request('POST',
url=self.url,
json=data)
except Exception as err:
print('Request Error:{}'.format(err))
time.sleep(2)
continue
try:
response = raw_response.json()
except Exception as err:
print('Response Error:{}'.format(err))
response = None
self.release()
if response is None:
print('Connection error, reconnect.')
# if connect error, frequent requests will casuse
# continuous unstable network, therefore wait here
# to slow down the request
self.wait()
continue
if raw_response.status_code == 200:
# msg = json.load(response.text)
# response
msg = response['choices'][0]['message']['content']
self.logger.debug(f'Generated: {msg}')
return msg
if raw_response.status_code == 401:
print('请求被拒绝 api_key错误')
continue
elif raw_response.status_code == 400:
print(messages, response)
print('请求失败,状态码:', raw_response)
msg = 'The request was rejected because high risk'
return msg
elif raw_response.status_code == 429:
print(messages, response)
print('请求失败,状态码:', raw_response)
time.sleep(5)
continue
else:
print(messages, response)
print('请求失败,状态码:', raw_response)
time.sleep(1)
max_num_retries += 1
raise RuntimeError(raw_response)