OpenCompass/opencompass/models/vllm_with_tf_above_v4_33.py
Junnan Liu 8e8d4f1c64
[Feature] Support G-Pass@k and LiveMathBench (#1772)
* support G-Pass@k and livemathbench

* fix bugs

* fix comments of GPassKEvaluator

* update saved details of GPassKEvaluator

* update saved details of GPassKEvaluator

* fix eval api configs & update openai_api for ease of debugging

* update huggingface path

* fix method name of G-Pass@k

* fix default value of eval_model_name

* refactor G-Pass@k evaluator

* log generation params for each backend

* fix evaluation resume

* add notimplementerror
2024-12-30 16:59:39 +08:00

137 lines
5.1 KiB
Python

# flake8: noqa
# yapf: disable
from typing import Dict, List, Optional
import numpy as np
from opencompass.models.base import BaseModel
from opencompass.utils import get_logger
from .huggingface_above_v4_33 import (_convert_chat_messages,
_format_with_fast_chat_template,
_get_meta_template,
_get_possible_max_seq_len)
try:
from vllm import LLM, SamplingParams
except ImportError:
LLM, SamplingParams = None, None
class VLLMwithChatTemplate(BaseModel):
def __init__(
self,
path: str,
model_kwargs: dict = dict(),
tokenizer_only: bool = False,
generation_kwargs: dict = dict(),
max_seq_len: int = None,
meta_template: Optional[Dict] = None,
fastchat_template: Optional[str] = None,
stop_words: List[str] = [],
):
assert LLM, ('Please install VLLM with `pip install vllm`. note: torch==2.1.2 is required.')
self.logger = get_logger()
self.path = path
self.tokenizer_only = tokenizer_only
self.template_parser = _get_meta_template(meta_template)
self.max_seq_len = _get_possible_max_seq_len(max_seq_len, path)
if tokenizer_only:
from transformers import AutoTokenizer
self.tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
else:
self._load_model(path, model_kwargs)
self.tokenizer = self.model.get_tokenizer()
self.generation_kwargs = generation_kwargs
self.generation_kwargs.pop('do_sample', None)
self.fastchat_template = fastchat_template
self.stop_words = list(set(stop_words + self._get_potential_stop_words(path)))
def _load_model(self, path: str, added_model_kwargs: dict = dict()):
import ray
if ray.is_initialized():
self.logger.info('shutdown ray instance to avoid "Calling ray.init() again" error.')
ray.shutdown()
DEFAULT_MODEL_KWARGS = dict(trust_remote_code=True)
model_kwargs = DEFAULT_MODEL_KWARGS.copy()
model_kwargs.update(added_model_kwargs)
self.model = LLM(path, **model_kwargs)
def _get_potential_stop_words(self, path: Optional[str]):
from transformers import GenerationConfig
potential_stop_words = []
try:
generation_config = GenerationConfig.from_pretrained(path)
except:
generation_config = None
if generation_config and hasattr(generation_config, 'eos_token_id'):
if isinstance(generation_config.eos_token_id, int):
potential_stop_words.append(self.tokenizer.decode(generation_config.eos_token_id))
else:
assert isinstance(generation_config.eos_token_id, list)
for token_id in generation_config.eos_token_id:
potential_stop_words.append(self.tokenizer.decode(token_id))
if self.tokenizer.eos_token is not None:
potential_stop_words.append(self.tokenizer.eos_token)
potential_stop_words = list(set(potential_stop_words))
potential_stop_words = [s for s in potential_stop_words if s]
return potential_stop_words
def generate(self, inputs: List[str], max_out_len: int, stopping_criteria: List[str] = [], **kwargs) -> List[str]:
"""Generate results given a list of inputs.
Args:
inputs (List[str]): A list of strings.
max_out_len (int): The maximum length of the output.
Returns:
List[str]: A list of generated strings.
"""
messages = _convert_chat_messages(inputs)
if self.fastchat_template:
messages = _format_with_fast_chat_template(messages, self.fastchat_template)
else:
messages = [self.tokenizer.apply_chat_template(m, add_generation_prompt=True, tokenize=False) for m in messages]
DEFAULT_GENERATION_KWARGS = {
'temperature': 0,
'max_tokens': max_out_len,
'stop': list(set(self.stop_words + stopping_criteria))
}
sampling_kwargs = DEFAULT_GENERATION_KWARGS.copy()
sampling_kwargs.update(self.generation_kwargs)
sampling_kwargs.update(kwargs)
sampling_kwargs = SamplingParams(**sampling_kwargs)
self.logger.info('Sampling Params of vLLM: ')
self.logger.info(sampling_kwargs)
outputs = self.model.generate(messages, sampling_kwargs)
prompt_list, output_strs = [], []
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
prompt_list.append(prompt)
output_strs.append(generated_text)
return output_strs
def get_token_len(self, prompt: str) -> int:
"""Get lengths of the tokenized strings.
Args:
prompt (str): Input string.
Returns:
int: Length of the input tokens
"""
m = _convert_chat_messages([prompt])[0]
t = self.tokenizer.apply_chat_template(m, add_generation_prompt=True, return_dict=True)
return len(t['input_ids'])