OpenCompass/docs/zh_cn/get_started.md
Leymore 86d5ec3d0f
Update configs (#9)
* Update implements

* Update
2023-07-06 12:27:41 +08:00

122 lines
4.6 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# 安装
1. 使用以下命令准备 OpenCompass 环境:
```bash
conda create --name opencompass python=3.10 pytorch torchvision pytorch-cuda -c nvidia -c pytorch -y
conda activate opencompass
```
如果你希望自定义 PyTorch 版本或相关的 CUDA 版本,请参考 [官方文档](https://pytorch.org/get-started/locally/) 准备 PyTorch 环境。需要注意的是OpenCompass 要求 `pytorch>=1.13`
2. 安装 OpenCompass
```bash
git clone https://github.com/opencompass/opencompass
cd opencompass
pip install -e .
```
3. 安装 humaneval可选
如果你希望在 humaneval 数据集上进行评估,请执行此步骤。
```
git clone https://github.com/openai/human-eval.git
cd human-eval
pip install -r requirements.txt
pip install -e .
cd ..
```
请仔细阅读 `human_eval/execution.py` **第48-57行**的注释,了解执行模型生成的代码可能存在的风险,如果接受这些风险,请取消**第58行**的注释,启用代码执行评测。
# 快速上手
在这一节,我们会以测试 LLaMA-7B 在 SIQA 和 PIQA 上的性能为例,带领你熟悉 OpenCompass 的一些基本功能。在运行前,
请先确保你安装好了 OpenCompass并在本机或集群上有满足 LLaMA-7B 最低要求的 GPU 计算资源。
## 准备数据集
在仓库目录创建 data 文件夹,并将数据集文件放置在 data 文件夹中
## 准备评测配置文件
创建如下配置文件 `configs/llama.py`:
```python
from mmengine.config import read_base
with read_base():
# 直接从预设数据集配置中读取需要的数据集配置
from .datasets.piqa.piqa_ppl import piqa_datasets
from .datasets.siqa.siqa_gen import siqa_datasets
# 将需要评测的数据集拼接成 datasets 字段
datasets = [*piqa_datasets, *siqa_datasets]
# 使用 HuggingFaceCausalLM 评测 HuggingFace 中 AutoModelForCausalLM 支持的模型
from opencompass.models import HuggingFaceCausalLM
models = [
dict(
type=HuggingFaceCausalLM,
# 以下参数为 HuggingFaceCausalLM 的初始化参数
path='huggyllama/llama-7b',
tokenizer_path='huggyllama/llama-7b',
tokenizer_kwargs=dict(padding_side='left', truncation_side='left'),
max_seq_len=2048,
# 以下参数为各类模型都有的参数,非 HuggingFaceCausalLM 的初始化参数
abbr='llama-7b', # 模型简称,用于结果展示
max_out_len=100, # 最长生成 token 数
batch_size=16, # 批次大小
run_cfg=dict(num_gpus=1), # 运行配置,用于指定资源需求
)
]
```
## 启动评测
首先,我们可以使用 debug 模式启动任务,以检查模型加载、数据集读取是否出现异常,如未正确读取缓存等。
```shell
python run.py configs/llama.py -w outputs/llama --debug
```
`--debug` 模式下只能逐一序列执行任务,因此检查无误后,可关闭 `--debug` 模式,使程序充分利用多卡资源
```shell
python run.py configs/llama.py -w outputs/llama
```
以下是一些与评测相关的参数,可以帮助你根据自己的环境情况配置更高效的推理任务。
- `-w outputs/llama`: 评测日志及结果保存目录
- `-r`: 重启上一次(中断的)评测
- `--mode all`: 指定进行某一阶段的任务
- all: 进行全阶段评测,包括推理和评估
- infer: 仅进行各个数据集上的推理
- eval: 仅基于推理结果进行评估
- viz: 仅展示评估结果
- `--max-partition-size 2000`: 数据集拆分尺寸,部分数据集可能比较大,利用此参数将其拆分成多个子任务,能有效利用资源。但如果拆分过细,则可能因为模型本身加载时间过长,反而速度更慢
- `--max-num-workers 32`: 最大并行启动任务数,在 Slurm 等分布式环境中,该参数用于指定最大提交任务数;在本地环境中,该参数用于指定最大并行执行的任务数,注意实际并行执行任务数受制于 GPU 等资源数,并不一定为该数字。
如果你不是在本机进行评测,而是使用 slurm 集群,可以指定如下参数:
- `--slurm`: 使用 slurm 在集群提交任务
- `--partition my_part`: slurm 集群分区
- `--retry 2`: 任务出错重试次数
## 获取评测结果
评测完成后,会打印评测结果表格如下:
```text
dataset version metric mode llama-7b
--------- --------- -------- ------ ----------
piqa 1cf9f0 accuracy ppl 77.75
siqa e78df3 accuracy gen 36.08
```
另外,会在结果保存目录的 `summary` 文件夹中保存 txt 和 csv 格式的结果文件。