mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
172 lines
7.2 KiB
Python
172 lines
7.2 KiB
Python
import json
|
|
import os
|
|
from os import environ
|
|
|
|
from datasets import Dataset, DatasetDict
|
|
|
|
from opencompass.registry import LOAD_DATASET
|
|
from opencompass.utils import get_data_path
|
|
|
|
from .base import BaseDataset
|
|
|
|
|
|
@LOAD_DATASET.register_module()
|
|
class WinograndeDataset(BaseDataset):
|
|
"""Disconnect from Huggingface, WinograndeDataset."""
|
|
|
|
@staticmethod
|
|
def load(path):
|
|
path = get_data_path(path)
|
|
if environ.get('DATASET_SOURCE') == 'ModelScope':
|
|
from modelscope import MsDataset
|
|
ms_dataset = MsDataset.load(path,
|
|
subset_name='winogrande_xs',
|
|
split='validation')
|
|
dataset_list = []
|
|
for line in ms_dataset:
|
|
prompt = line['sentence']
|
|
continue_prompt = prompt.split('_')[1]
|
|
data_item = {
|
|
'prompt': prompt,
|
|
'only_option1': line['option1'],
|
|
'only_option2': line['option2'],
|
|
'opt1': prompt.replace('_', line['option1']),
|
|
'opt2': prompt.replace('_', line['option2']),
|
|
'answer': line['answer'],
|
|
'cont': continue_prompt,
|
|
}
|
|
dataset_list.append(data_item)
|
|
dataset_list = Dataset.from_list(dataset_list)
|
|
else:
|
|
path = os.path.join(path, 'dev.jsonl')
|
|
dataset_list = []
|
|
with open(path, 'r', encoding='utf-8') as f:
|
|
for line in f:
|
|
line = json.loads(line)
|
|
prompt = line['sentence']
|
|
continue_prompt = prompt.split('_')[1]
|
|
data_item = {
|
|
'prompt': prompt,
|
|
'only_option1': line['option1'],
|
|
'only_option2': line['option2'],
|
|
'opt1': prompt.replace('_', line['option1']),
|
|
'opt2': prompt.replace('_', line['option2']),
|
|
'answer': line['answer'],
|
|
'cont': continue_prompt,
|
|
}
|
|
dataset_list.append(data_item)
|
|
dataset_list = Dataset.from_list(dataset_list)
|
|
return dataset_list
|
|
|
|
|
|
@LOAD_DATASET.register_module()
|
|
class WinograndeDatasetV2(BaseDataset):
|
|
"""Disconnect from Huggingface, WinograndeDatasetV2."""
|
|
|
|
@staticmethod
|
|
def load(path):
|
|
path = get_data_path(path)
|
|
if environ.get('DATASET_SOURCE') == 'ModelScope':
|
|
from modelscope import MsDataset
|
|
ms_dataset = MsDataset.load(path,
|
|
subset_name='winogrande_xs',
|
|
split='validation')
|
|
dataset_list = []
|
|
for line in ms_dataset:
|
|
prompt = line['sentence']
|
|
continue_prompt = prompt.split('_')[1]
|
|
answer = line['answer']
|
|
answer = ' AB'[int(answer)] if answer != '' else 'NULL'
|
|
data_item = {
|
|
'prompt': prompt,
|
|
'only_option1': line['option1'],
|
|
'only_option2': line['option2'],
|
|
'opt1': prompt.replace('_', line['option1']),
|
|
'opt2': prompt.replace('_', line['option2']),
|
|
'answer': answer,
|
|
'cont': continue_prompt,
|
|
}
|
|
dataset_list.append(data_item)
|
|
dataset_list = Dataset.from_list(dataset_list)
|
|
else:
|
|
path = os.path.join(path, 'dev.jsonl')
|
|
dataset_list = []
|
|
with open(path, 'r', encoding='utf-8') as f:
|
|
for line in f:
|
|
line = json.loads(line)
|
|
prompt = line['sentence']
|
|
continue_prompt = prompt.split('_')[1]
|
|
answer = line['answer']
|
|
answer = ' AB'[int(answer)] if answer != '' else 'NULL'
|
|
data_item = {
|
|
'prompt': prompt,
|
|
'only_option1': line['option1'],
|
|
'only_option2': line['option2'],
|
|
'opt1': prompt.replace('_', line['option1']),
|
|
'opt2': prompt.replace('_', line['option2']),
|
|
'answer': answer,
|
|
'cont': continue_prompt,
|
|
}
|
|
dataset_list.append(data_item)
|
|
dataset_list = Dataset.from_list(dataset_list)
|
|
return dataset_list
|
|
|
|
|
|
@LOAD_DATASET.register_module()
|
|
class WinograndeDatasetV3(BaseDataset):
|
|
"""Disconnect from Huggingface, WinograndeDatasetV2."""
|
|
|
|
@staticmethod
|
|
def load(path):
|
|
path = get_data_path(path)
|
|
dataset_dict = DatasetDict()
|
|
if environ.get('DATASET_SOURCE') == 'ModelScope':
|
|
from modelscope import MsDataset
|
|
for split in ['train', 'validation']:
|
|
ms_dataset = MsDataset.load(path,
|
|
subset_name='winogrande_xs',
|
|
split=split)
|
|
dataset_list = []
|
|
for line in ms_dataset:
|
|
prompt = line['sentence']
|
|
continue_prompt = prompt.split('_')[1]
|
|
answer = line['answer']
|
|
answer = ' AB'[int(answer)] if answer != '' else 'NULL'
|
|
data_item = {
|
|
'prompt': prompt,
|
|
'only_option1': line['option1'],
|
|
'only_option2': line['option2'],
|
|
'opt1': prompt.replace('_', line['option1']),
|
|
'opt2': prompt.replace('_', line['option2']),
|
|
'answer': answer,
|
|
'cont': continue_prompt,
|
|
}
|
|
dataset_list.append(data_item)
|
|
if split == 'train':
|
|
dataset_dict['train_xs'] = Dataset.from_list(dataset_list)
|
|
elif split == 'validation':
|
|
dataset_dict['dev'] = Dataset.from_list(dataset_list)
|
|
else:
|
|
for split in ['train_xs', 'dev']:
|
|
filename = os.path.join(path, f'{split}.jsonl')
|
|
dataset_list = []
|
|
with open(filename, 'r', encoding='utf-8') as f:
|
|
for line in f:
|
|
line = json.loads(line)
|
|
prompt = line['sentence']
|
|
continue_prompt = prompt.split('_')[1]
|
|
answer = line['answer']
|
|
answer = ' AB'[int(answer)] if answer != '' else 'NULL'
|
|
data_item = {
|
|
'prompt': prompt,
|
|
'only_option1': line['option1'],
|
|
'only_option2': line['option2'],
|
|
'opt1': prompt.replace('_', line['option1']),
|
|
'opt2': prompt.replace('_', line['option2']),
|
|
'answer': answer,
|
|
'cont': continue_prompt,
|
|
}
|
|
dataset_list.append(data_item)
|
|
dataset_dict[split] = Dataset.from_list(dataset_list)
|
|
return dataset_dict
|