OpenCompass/opencompass/datasets/ceval.py
Yunlin Mao 818d72a650
[Fix] modelscope dataset load problem (#1406)
* fix modelscope dataset load

* fix lint
2024-08-08 14:01:06 +08:00

116 lines
4.7 KiB
Python

import csv
import json
import os.path as osp
from os import environ
from datasets import Dataset, DatasetDict
from opencompass.registry import LOAD_DATASET
from opencompass.utils import get_data_path
from .base import BaseDataset
@LOAD_DATASET.register_module()
class CEvalDataset(BaseDataset):
@staticmethod
def load(path: str, name: str, local_mode: bool = False):
path = get_data_path(path, local_mode=local_mode)
dataset = {}
if environ.get('DATASET_SOURCE') == 'ModelScope':
from modelscope import MsDataset
dataset = MsDataset.load(dataset_name=path, subset_name=name)
else:
for split in ['dev', 'val', 'test']:
filename = osp.join(path, split, f'{name}_{split}.csv')
with open(filename, encoding='utf-8') as f:
reader = csv.reader(f)
header = next(reader)
for row in reader:
item = dict(zip(header, row))
item.setdefault('explanation', '')
item.setdefault('answer', '')
dataset.setdefault(split, []).append(item)
dataset = DatasetDict(
{i: Dataset.from_list(dataset[i])
for i in dataset})
return dataset
class CEvalDatasetClean(BaseDataset):
# load the contamination annotations of CEval from
# https://github.com/liyucheng09/Contamination_Detector
@staticmethod
def load_contamination_annotations(path, split='val'):
import requests
assert split == 'val', 'Now we only have annotations for val set'
if environ.get('DATASET_SOURCE') == 'ModelScope':
from modelscope.utils.config_ds import MS_DATASETS_CACHE
annotation_cache_path = osp.join(
MS_DATASETS_CACHE, 'ceval_contamination_annotations.json')
link_of_annotations = 'https://modelscope.cn/datasets/opencompass/Contamination_Detector/resolve/master/ceval_annotations.json' # noqa
else:
annotation_cache_path = osp.join(
path, split, 'ceval_contamination_annotations.json')
link_of_annotations = 'https://github.com/liyucheng09/Contamination_Detector/releases/download/v0.1.1rc/ceval_annotations.json' # noqa
if osp.exists(annotation_cache_path):
with open(annotation_cache_path, 'r') as f:
annotations = json.load(f)
return annotations
annotations = json.loads(requests.get(link_of_annotations).text)
with open(annotation_cache_path, 'w') as f:
json.dump(annotations, f)
return annotations
@staticmethod
def load(path: str, name: str):
path = get_data_path(path)
dataset = {}
if environ.get('DATASET_SOURCE') == 'ModelScope':
from modelscope import MsDataset
dataset = MsDataset.load(dataset_name=path, subset_name=name)
# 向该数据添加 'is_clean' 字段
annotations = CEvalDatasetClean.load_contamination_annotations(
path, 'val')
val = dataset['val']
val_data = []
for index in range(val.num_rows):
row = val[index]
row_id = f'{name}-{index}'
row.update({
'is_clean':
annotations[row_id][0]
if row_id in annotations else 'not labeled'
})
val_data.append(row)
dataset['val'] = Dataset.from_list(val_data)
else:
for split in ['dev', 'val', 'test']:
if split == 'val':
annotations = \
CEvalDatasetClean.load_contamination_annotations(
path, split)
filename = osp.join(path, split, f'{name}_{split}.csv')
with open(filename, encoding='utf-8') as f:
reader = csv.reader(f)
header = next(reader)
for row_index, row in enumerate(reader):
item = dict(zip(header, row))
item.setdefault('explanation', '')
item.setdefault('answer', '')
if split == 'val':
row_id = f'{name}-{row_index}'
if row_id in annotations:
item['is_clean'] = annotations[row_id][0]
else:
item['is_clean'] = 'not labeled'
dataset.setdefault(split, []).append(item)
dataset = DatasetDict(
{i: Dataset.from_list(dataset[i])
for i in dataset})
return dataset