OpenCompass/opencompass/datasets/TheoremQA/main.py
Xingjun.Wang edab1c07ba
[Feature] Support ModelScope datasets (#1289)
* add ceval, gsm8k modelscope surpport

* update race, mmlu, arc, cmmlu, commonsenseqa, humaneval and unittest

* update bbh, flores, obqa, siqa, storycloze, summedits, winogrande, xsum datasets

* format file

* format file

* update dataset format

* support ms_dataset

* udpate dataset for modelscope support

* merge myl_dev and update test_ms_dataset

* udpate dataset for modelscope support

* update readme

* update eval_api_zhipu_v2

* remove unused code

* add get_data_path function

* update readme

* remove tydiqa japanese subset

* add ceval, gsm8k modelscope surpport

* update race, mmlu, arc, cmmlu, commonsenseqa, humaneval and unittest

* update bbh, flores, obqa, siqa, storycloze, summedits, winogrande, xsum datasets

* format file

* format file

* update dataset format

* support ms_dataset

* udpate dataset for modelscope support

* merge myl_dev and update test_ms_dataset

* update readme

* udpate dataset for modelscope support

* update eval_api_zhipu_v2

* remove unused code

* add get_data_path function

* remove tydiqa japanese subset

* update util

* remove .DS_Store

* fix md format

* move util into package

* update docs/get_started.md

* restore eval_api_zhipu_v2.py, add environment setting

* Update dataset

* Update

* Update

* Update

* Update

---------

Co-authored-by: Yun lin <yunlin@U-Q9X2K4QV-1904.local>
Co-authored-by: Yunnglin <mao.looper@qq.com>
Co-authored-by: Yun lin <yunlin@laptop.local>
Co-authored-by: Yunnglin <maoyl@smail.nju.edu.cn>
Co-authored-by: zhangsongyang <zhangsongyang@pjlab.org.cn>
2024-07-29 13:48:32 +08:00

69 lines
2.1 KiB
Python

import re
import json
from datasets import Dataset, DatasetDict
from opencompass.registry import LOAD_DATASET, TEXT_POSTPROCESSORS, ICL_EVALUATORS
from opencompass.utils import get_data_path
from opencompass.openicl.icl_evaluator import BaseEvaluator
from ..base import BaseDataset
from . import utils
from tqdm import tqdm
@LOAD_DATASET.register_module()
class TheoremQADatasetV3(BaseDataset):
@staticmethod
def load(path: str):
path = get_data_path(path, local_mode=True)
with open(path, 'r') as f:
data = json.load(f)
for item in data:
item['Answer'] = str(item['Answer'])
dataset = Dataset.from_list(data)
return dataset
def TheoremQA_postprocess_v3(text: str) -> str:
answer = utils.answer_clean(["The answer is:", "The answer is", "the answer is"], text)
return answer
@ICL_EVALUATORS.register_module()
class TheoremQAEvaluatorV3(BaseEvaluator):
def score(self, predictions, references, test_set):
if len(predictions) != len(references):
return {"error": "preds and refrs have different length"}
details = []
correct, wrong = 0, 0
for index in tqdm(range(len(predictions))):
answer = predictions[index]
groundtruth = references[index]
answer_type = test_set[index]['Answer_type']
if answer_type in ['float', 'integer', 'bool']:
groundtruth = [groundtruth, eval(groundtruth)]
else:
groundtruth = [groundtruth, None]
if utils.compare_answer_with_groundtruth(answer, *groundtruth):
correct += 1
is_correct = True
else:
wrong += 1
is_correct = False
details.append(
{
# "question": question,
# "solution": output,
"correct": groundtruth,
"pred": answer,
"is_correct": is_correct,
}
)
score = correct / (correct + wrong) * 100
return {'score': score, 'details': details}