mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
251 lines
10 KiB
Python
251 lines
10 KiB
Python
import argparse
|
||
import getpass
|
||
import os
|
||
import os.path as osp
|
||
from datetime import datetime
|
||
|
||
from mmengine.config import Config
|
||
|
||
from opencompass.partitioners import NaivePartitioner, SizePartitioner
|
||
from opencompass.runners import DLCRunner, LocalRunner, SlurmRunner
|
||
from opencompass.utils import LarkReporter, Summarizer, get_logger
|
||
|
||
|
||
def parse_args():
|
||
parser = argparse.ArgumentParser(description='Run an evaluation task')
|
||
parser.add_argument('config', help='Train config file path')
|
||
# add mutually exclusive args `--slurm` `--dlc`, default to local runner
|
||
luach_method = parser.add_mutually_exclusive_group()
|
||
luach_method.add_argument('--slurm',
|
||
action='store_true',
|
||
default=False,
|
||
help='Whether to use srun to launch tasks, if '
|
||
'True, `--partition(-p)` must be set. Defaults'
|
||
' to False')
|
||
luach_method.add_argument('--dlc',
|
||
action='store_true',
|
||
default=False,
|
||
help='Whether to use dlc to launch tasks, if '
|
||
'True, `--aliyun-cfg` must be set. Defaults'
|
||
' to False')
|
||
# add general args
|
||
parser.add_argument('--debug',
|
||
help='Debug mode, in which scheduler will run tasks '
|
||
'in the single process, and output will not be '
|
||
'redirected to files',
|
||
action='store_true',
|
||
default=False)
|
||
parser.add_argument('-m',
|
||
'--mode',
|
||
help='Running mode. You can choose "infer" if you '
|
||
'only want the inference results, or "eval" if you '
|
||
'already have the results and want to evaluate them, '
|
||
'or "viz" if you want to visualize the results.',
|
||
choices=['all', 'infer', 'eval', 'viz'],
|
||
default='all',
|
||
type=str)
|
||
parser.add_argument('-r',
|
||
'--reuse',
|
||
nargs='?',
|
||
type=str,
|
||
const='latest',
|
||
help='Reuse previous outputs & results, and run any '
|
||
'missing jobs presented in the config. If its '
|
||
'argument is not specified, the latest results in '
|
||
'the work_dir will be reused. The argument should '
|
||
'also be a specific timestamp, e.g. 20230516_144254'),
|
||
parser.add_argument('-w',
|
||
'--work-dir',
|
||
help='Work path, all the outputs will be saved in '
|
||
'this path, including the slurm logs, the evaluation'
|
||
' results, the summary results, etc. If not specified,'
|
||
' the work_dir will be set to None',
|
||
default=None,
|
||
type=str)
|
||
parser.add_argument('-l',
|
||
'--lark',
|
||
help='Report the running status to lark bot',
|
||
action='store_true',
|
||
default=False)
|
||
parser.add_argument('--max-partition-size',
|
||
help='The maximum size of a task.',
|
||
type=int,
|
||
default=2000),
|
||
parser.add_argument(
|
||
'--gen-task-coef',
|
||
help='The dataset cost measurement coefficient for generation tasks',
|
||
type=int,
|
||
default=20)
|
||
parser.add_argument('--max-num-workers',
|
||
help='Max number of workers to run in parallel.',
|
||
type=int,
|
||
default=32)
|
||
parser.add_argument(
|
||
'--retry',
|
||
help='Number of retries if the job failed when using slurm or dlc.',
|
||
type=int,
|
||
default=2)
|
||
# set srun args
|
||
slurm_parser = parser.add_argument_group('slurm_args')
|
||
parse_slurm_args(slurm_parser)
|
||
# set dlc args
|
||
dlc_parser = parser.add_argument_group('dlc_args')
|
||
parse_dlc_args(dlc_parser)
|
||
args = parser.parse_args()
|
||
if args.slurm:
|
||
assert args.partition is not None, (
|
||
'--partition(-p) must be set if you want to use slurm')
|
||
if args.dlc:
|
||
assert os.path.exists(args.aliyun_cfg), (
|
||
'When luaching tasks using dlc, it needs to be configured'
|
||
'in "~/.aliyun.cfg", or use "--aliyun-cfg $ALiYun-CFG_Path"'
|
||
' to specify a new path.')
|
||
return args
|
||
|
||
|
||
def parse_slurm_args(slurm_parser):
|
||
"""these args are all for slurm launch."""
|
||
slurm_parser.add_argument('-p',
|
||
'--partition',
|
||
help='Slurm partition name',
|
||
default=None,
|
||
type=str)
|
||
slurm_parser.add_argument('-q',
|
||
'--quotatype',
|
||
help='Slurm quota type',
|
||
default='auto',
|
||
type=str)
|
||
|
||
|
||
def parse_dlc_args(dlc_parser):
|
||
"""these args are all for dlc launch."""
|
||
dlc_parser.add_argument('--aliyun-cfg',
|
||
help='The config path for aliyun config',
|
||
default='~/.aliyun.cfg',
|
||
type=str)
|
||
|
||
|
||
def main():
|
||
args = parse_args()
|
||
|
||
# initialize logger
|
||
logger = get_logger(log_level='DEBUG' if args.debug else 'INFO')
|
||
|
||
cfg = Config.fromfile(args.config)
|
||
if args.work_dir is not None:
|
||
cfg['work_dir'] = args.work_dir
|
||
else:
|
||
cfg.setdefault('work_dir', './outputs/default/')
|
||
|
||
# cfg_time_str defaults to the current time
|
||
cfg_time_str = dir_time_str = datetime.now().strftime('%Y%m%d_%H%M%S')
|
||
if args.reuse:
|
||
if args.reuse == 'latest':
|
||
dirs = os.listdir(cfg.work_dir)
|
||
assert len(dirs) > 0, 'No previous results to reuse!'
|
||
dir_time_str = sorted(dirs)[-1]
|
||
else:
|
||
dir_time_str = args.reuse
|
||
logger.info(f'Reusing experiements from {dir_time_str}')
|
||
elif args.mode in ['eval', 'viz']:
|
||
raise ValueError('You must specify -r or --reuse when running in eval '
|
||
'or viz mode!')
|
||
|
||
# update "actual" work_dir
|
||
cfg['work_dir'] = osp.join(cfg.work_dir, dir_time_str)
|
||
os.makedirs(osp.join(cfg.work_dir, 'configs'), exist_ok=True)
|
||
|
||
# dump config
|
||
output_config_path = osp.join(cfg.work_dir, 'configs',
|
||
f'{cfg_time_str}.py')
|
||
cfg.dump(output_config_path)
|
||
# Config is intentally reloaded here to avoid initialized
|
||
# types cannot be serialized
|
||
cfg = Config.fromfile(output_config_path)
|
||
|
||
# report to lark bot if specify --lark
|
||
if not args.lark:
|
||
cfg['lark_bot_url'] = None
|
||
elif cfg.get('lark_bot_url', None):
|
||
content = f'{getpass.getuser()}\'s task has been launched!'
|
||
LarkReporter(cfg['lark_bot_url']).post(content)
|
||
|
||
if args.mode in ['all', 'infer']:
|
||
# Use SizePartitioner to split into subtasks
|
||
partitioner = SizePartitioner(osp.join(cfg['work_dir'],
|
||
'predictions/'),
|
||
max_task_size=args.max_partition_size,
|
||
gen_task_coef=args.gen_task_coef)
|
||
tasks = partitioner(cfg)
|
||
# execute the infer subtasks
|
||
exec_infer_runner(tasks, args, cfg)
|
||
|
||
# evaluate
|
||
if args.mode in ['all', 'eval']:
|
||
# Use NaivePartitioner,not split
|
||
partitioner = NaivePartitioner(osp.join(cfg['work_dir'], 'results/'))
|
||
tasks = partitioner(cfg)
|
||
# execute the eval tasks
|
||
exec_eval_runner(tasks, args, cfg)
|
||
|
||
# visualize
|
||
if args.mode in ['all', 'eval', 'viz']:
|
||
summarizer = Summarizer(cfg)
|
||
summarizer.summarize(time_str=cfg_time_str)
|
||
|
||
|
||
def exec_infer_runner(tasks, args, cfg):
|
||
"""execute infer runner according to args."""
|
||
if args.slurm:
|
||
runner = SlurmRunner(dict(type='OpenICLInferTask'),
|
||
max_num_workers=args.max_num_workers,
|
||
partition=args.partition,
|
||
quotatype=args.quotatype,
|
||
retry=args.retry,
|
||
debug=args.debug,
|
||
lark_bot_url=cfg['lark_bot_url'])
|
||
elif args.dlc:
|
||
runner = DLCRunner(dict(type='OpenICLInferTask'),
|
||
max_num_workers=args.max_num_workers,
|
||
aliyun_cfg=Config.fromfile(args.aliyun_cfg),
|
||
retry=args.retry,
|
||
debug=args.debug,
|
||
lark_bot_url=cfg['lark_bot_url'])
|
||
else:
|
||
runner = LocalRunner(
|
||
task=dict(type='OpenICLInferTask'),
|
||
# max_num_workers = args.max_num_workers,
|
||
debug=args.debug,
|
||
lark_bot_url=cfg['lark_bot_url'])
|
||
runner(tasks)
|
||
|
||
|
||
def exec_eval_runner(tasks, args, cfg):
|
||
"""execute infer runner according to args."""
|
||
if args.slurm:
|
||
runner = SlurmRunner(dict(type='OpenICLEvalTask'),
|
||
max_num_workers=args.max_num_workers,
|
||
partition=args.partition,
|
||
quotatype=args.quotatype,
|
||
retry=args.retry,
|
||
debug=args.debug,
|
||
lark_bot_url=cfg['lark_bot_url'])
|
||
elif args.dlc:
|
||
runner = DLCRunner(dict(type='OpenICLEvalTask'),
|
||
max_num_workers=args.max_num_workers,
|
||
aliyun_cfg=Config.fromfile(args.aliyun_cfg),
|
||
retry=args.retry,
|
||
debug=args.debug,
|
||
lark_bot_url=cfg['lark_bot_url'])
|
||
else:
|
||
runner = LocalRunner(
|
||
task=dict(type='OpenICLEvalTask'),
|
||
# max_num_workers = args.max_num_workers,
|
||
debug=args.debug,
|
||
lark_bot_url=cfg['lark_bot_url'])
|
||
runner(tasks)
|
||
|
||
|
||
if __name__ == '__main__':
|
||
main()
|