mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
49 lines
1.4 KiB
Python
49 lines
1.4 KiB
Python
import re
|
|
import string
|
|
|
|
from datasets import DatasetDict, load_dataset
|
|
|
|
from opencompass.openicl.icl_evaluator import BaseEvaluator
|
|
from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET
|
|
from opencompass.utils.text_postprocessors import general_postprocess
|
|
|
|
from .base import BaseDataset
|
|
|
|
|
|
@LOAD_DATASET.register_module()
|
|
class lambadaDataset(BaseDataset):
|
|
|
|
@staticmethod
|
|
def load(**kwargs):
|
|
dataset = load_dataset(**kwargs, split='test')
|
|
|
|
def preprocess(example):
|
|
prompt, target = example['text'].strip().rsplit(' ', 1)
|
|
example['prompt'] = prompt
|
|
example['label'] = target
|
|
return example
|
|
|
|
dataset = dataset.map(preprocess)
|
|
return DatasetDict({'test': dataset})
|
|
|
|
|
|
@ICL_EVALUATORS.register_module()
|
|
class LambadaEvaluator(BaseEvaluator):
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def score(self, predictions, references):
|
|
if len(predictions) != len(references):
|
|
return {
|
|
'error': 'predictions and references have different '
|
|
'length'
|
|
}
|
|
score = 0.0
|
|
for pred, refer in zip(predictions, references):
|
|
pred = pred.strip().split(' ')[0]
|
|
pred = re.split(f'[{string.punctuation}]', pred)[0]
|
|
score += general_postprocess(pred) == general_postprocess(refer)
|
|
score = 100.0 * score / len(predictions)
|
|
return dict(accuracy=score)
|