OpenCompass/configs/datasets/glm/csl.py
2023-07-04 21:34:55 +08:00

47 lines
1.4 KiB
Python

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GLMChoiceInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import CslDataset
csl_reader_cfg = dict(
input_columns=["abst", "keywords"], output_column='label')
csl_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template={
0: "</E>摘要:</A>",
1: "</E>摘要:</A>关键词:</K>"
},
column_token_map={
"abst": '</A>',
'keywords': '</K>'
},
ice_token='</E>'),
prompt_template=dict(
type=PromptTemplate,
template=
'</E>Abstract: </A>\nKeyword: </K>\n Does all keywords come from the given abstract? (Yes or No)',
column_token_map={
"abst": '</A>',
'keywords': '</K>'
},
ice_token='</E>'),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GLMChoiceInferencer, choices=['No', 'Yes']))
csl_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
csl_datasets = [
dict(
type=CslDataset,
path='json',
abbr='csl',
data_files='./data/FewCLUE/csl/test_public.json',
split='train',
reader_cfg=csl_reader_cfg,
infer_cfg=csl_infer_cfg,
eval_cfg=csl_eval_cfg)
]